

Lazertinib vs Osimertinib in 1L *EGFR*-mutant Advanced NSCLC: A Randomized, Double-blind, Exploratory Analysis From MARIPOSA

<u>Se-Hoon Lee</u>¹, Byoung Chul Cho², Hidetoshi Hayashi³, Enriqueta Felip⁴, Alexander I Spira⁵, Nicolas Girard⁶, Yu Jung Kim⁷, Yuriy Ostapenko⁸, Pongwut Danchaivijitr⁹, Baogang Liu¹⁰, Adlinda Alip¹¹, Ernesto Korbenfeld¹², Josiane Mourão Dias¹³, Ki Hyeong Lee¹⁴, Hailin Xiong¹⁵, Soon Hin How¹⁶, Ying Cheng¹⁷, Gee-Chen Chang¹⁸, James Chih-Hsin Yang¹⁹, Benjamin Besse²⁰, Michael Thomas²¹, Joshua C Curtin²², Jiarui Zhang²², John Xie²³, Tao Sun²³, Melissa Martinez²³, Seema Sethi²², Roland E Knoblauch²², Elizabeth Fennema²⁴, Mahesh Daksh²³, Mariah Ennis²², Joshua M Bauml²², Shun Lu²⁵

Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Medical Oncology, Vonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Medical Oncology, Senice, Vall d'Hebron Institute of Oncology, Vinional University and Hebron Barcelona Hospital Campus, University Autonoma de Barcelona, Barcelona, Spain; Virginia Cancer Specialists, Fairfax, VA, USA; Institut du Thorax Curie-Montsouris, Paris, France; Paris Saclay University, UVSQ, Versailles, France; Pseul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea; Sundand Cancer Institute, Kyiv, Ukraine; Sirirraj Hospital, Maridoi University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea; Sundand Cancer Institute, Kyiv, Ukraine; Sirirraj Hospital, Maridoi University Bundang Hospital, Seoul National University Gorden, Republic of Korea; Sundand Cancer Institute, Kyiv, Ukraine; Sirirraj Hospital, Maridoi University Hospital, Seoul National University Gorden, Republic of Korea; Sundand Cancer Hospital, Seoul National University Hospital, Cheongju, Republic of Korea; Sundand University Hospital, Cheongju, Republic of Korea; Sundand University Hospital of Buenos Aires - Central British Hospital, Chinag Sundand University Medical Department, Chungbuk National University Hospital, Cheongju, Republic of Korea; Sundand University Hospital of Guangdong Province, Huizhou, China; Sundand University Malaysia (IIUM) Medical Specialist Centre, Pahang, Malaysia; Sundand University Medical University Medical University Hospital, Chinag Sundand University Sundand University Sundand Univers

Background

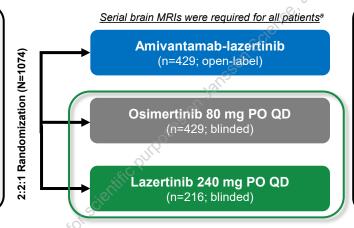
- Lazertinib is a highly selective, CNS-penetrant, third-generation EGFR-TKI¹
- Lazertinib was superior to gefitinib in treatment-naïve EGFR-mutant advanced NSCLC in the LASER301 study (HR, 0.45; 95% CI, 0.34–0.58; P<0.001)¹
- Lazertinib was selected for combination with amivantamab due to:
 - High selectivity for mutant EGFR, with relatively low rates of wild-type EGFR toxicity^{1–3}
 - Minimal inhibition of HER2, without elevated risk of QTc prolongation or cardiomyopathy^{1–3}
- In MARIPOSA, amivantamab + lazertinib demonstrated superior PFS versus osimertinib (HR, 0.70; 95% CI, 0.58–0.85; *P*<0.001), leading to its FDA approval for patients with treatment-naïve EGFR-mutant advanced NSCLC4-6

We compared single-agent lazertinib versus osimertinib: A randomized, double-blind, exploratory analysis

CI, confidence interval; CNS, central nervous system; EGFR, epidermal growth factor receptor; HR, hazard ratio; NSCLC, non-small cell lung cancer; PFS, progression-free survival; TKI, tyrosine kinase inhibitor.

1. Cho BC, et al. J Clin Oncol. 2023;41(26):4208-4217. 2. Heppner DE, et al. ACS Med Chem Lett. 2022;13(12):1856-1863. 3. Yun J, et al. Clin Cancer Res. 2019;25(8):2575-2587. 4. Cho BC, et al. N Engl J Med. 2024. doi:10.1056/NEJMoa2403614. 5. RYBREVANT® (amivantamab-vmjw) injection, for intravenous use [package insert]. Horsham, PA: Janssen Biotech, Inc.; 2024. 6. LAZCLUZE® (lazertinib) tablets, for oral use [package insert]. Horsham, PA: Janssen Biotech, Inc.; 2024.

MARIPOSA: Phase 3 Study Design


This is the first randomized, double-blind trial to prospectively evaluate 2 third-generation EGFR-TKIs

Key eligibility criteria

- Locally advanced or metastatic NSCLC
- Treatment-naïve for advanced disease
- Documented EGFR Ex19del or L858R
- ECOG PS 0 or 1
- Asymptomatic brain metastases did not require definitive treatment

Stratification factors

- EGFR mutation type (Ex19del or L858R)
- Asian race (yes or no)
- History of brain metastases (yes or no)

Focus of this presentation

Primary endpoint: PFS by BICR per RECIST v1.1:

Amiyantamab-lazertinib vs osimertinib

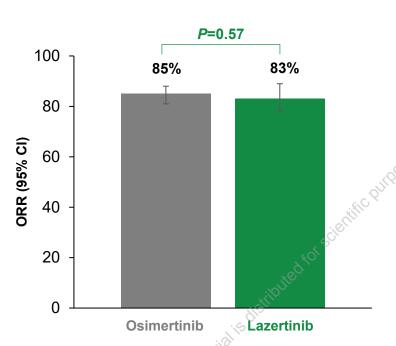
Exploratory endpoints for lazertinib vs osimertinib reported here:

- PFS by BICR per RECIST v1.1
- ORR
- DoR
- **TTSP**
- OS
- Safety

Lazertinib monotherapy arm was included to assess the contribution of components

Note: MARIPOSA (ClinicalTrials.gov Identifier: NCT04487080) enrollment period: November 2020 to May 2022; clinical cut-off: 11-Aug-2023.

Baseline brain MRIs were required for all patients and performed <28 days prior to randomization; patients who could not have MRIs were permitted to have CT scans. Brain scan frequency was every 8 weeks for the first 30 months and then every 12 weeks thereafter for patients with a history of brain metastasis and every 24 weeks for patients with no history of brain metastasis. Extracranial tumor assessments were conducted every 8 weeks for the first 30 months and then every 12 weeks until disease progression was confirmed by BICR.

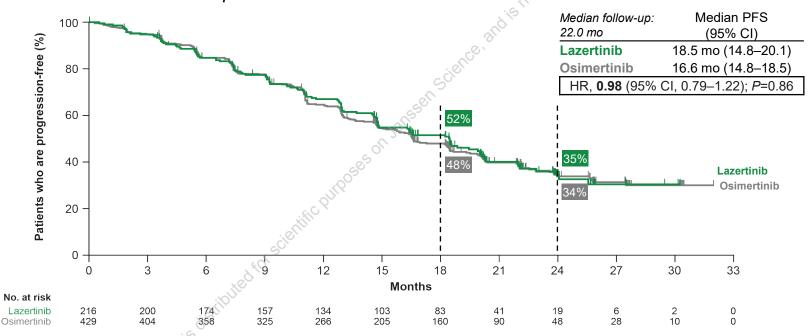

BICR, blinded independent central review; CT, computed tomography; DoR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; EGFR, epidermal growth factor receptor; Ex19del, exon 19 deletion; MRI, magnetic resonance imaging; NSCLC, non-small cell lung cancer; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PO, orally; QD, once daily; RECIST, Response Evaluation Criteria in Solid Tumors; TKI, tyrosine kinase inhibitor; TTSP, time to symptomatic progression.

ORR and DoR by BICR

ORR and median DoR were comparable between lazertinib and osimertinib

Ó-	<u> </u>			
BICR-assessed response, n (%) ^a	Osimertinib (n=429)	Lazertinib (n=216)		
ORR 50				
All responders	85% (95% CI, 81–88)	83% (95% CI, 77–88)		
Confirmed responders	76% (95% CI, 71–80)	75% (95% CI, 68–80)		
Best response ^b				
CR	15 (4)	9 (4)		
PR	335 (81)	168 (79)		
SD	42 (10)	23 (11)		
PD	11 (3)	9 (4)		
NE	11 (3)	5 (2)		
Median DoR ^c	16.8 mo (95% CI, 14.8–18.5)	16.6 mo (95% CI, 14.8–20.2)		
Ongoing responses	151 of 314 (48)	77 of 160 (48)		

aNo. of patients with measurable disease at baseline by BICR was 214 for lazertinib and 414 for osimertinib. Includes all responders. Among confirmed responders.


BICR, blinded independent central review; CI, confidence interval; CR, complete response; DR, duration of response; NE, not evaluable; ORR, objective response rate; PD, progressive disease; PR, partial response; SD, stable disease.

PFS by BICR

PFS was comparable between the lazertinib and osimertinib arms

PFS was comparable between lazertinib and osimertinib among prespecified subgroups including Asian race^a and EGFR mutation subtype^b

^aHR, 1.02 (95% CI, 0.77–1.35). ^bExon 19 deletion: HR, 1.03 (95% CI, 0.78–1.37); L858R: HR, 0.91 (95% CI, 0.65–1.28). BICR, blinded independent central review; CI, confidence interval; EGFR, epidermal growth factor receptor; HR, hazard ratio; PFS, progression-free survival.

With TP53 co-mutations^{a,b}

MARIPOSA

Median PFS

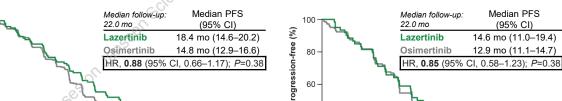
(95% CI)

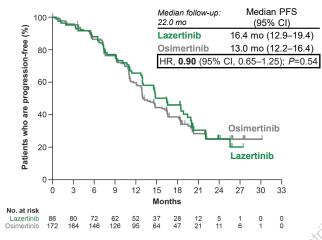
14.6 mo (11.0-19.4)

12.9 mo (11.1-14.7)

Lazertinib

Osimertinib


PFS by High-risk Subgroups


1L FGFR+ NSCLC High-risk features, such as brain metastases, ctDNA shedding, and baseline TP53 co-mutations are common in patients with EGFR-mutated NSCLC.¹⁻⁴ PFS results in these groups were comparable across arms

With brain metastasesa

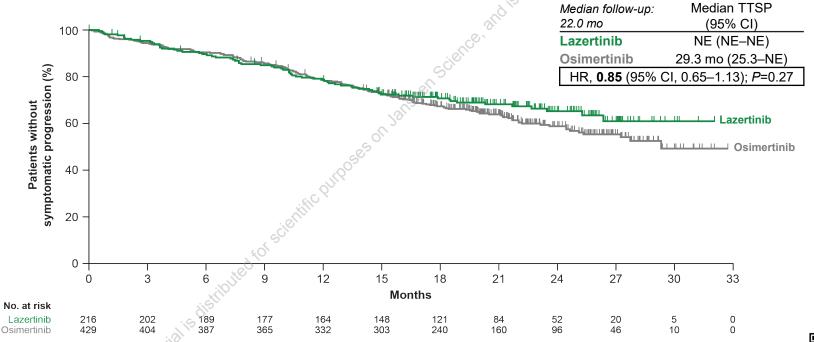
Patients who are

Lazertinib

Osimertinib

wild-type TP53 (lazertinib: n=84, osimertinib: n=172; HR, 0.95 [95% CI, 0.71-1.26]). Pathogenic alterations were detected with the Guardant Health G360® panel.

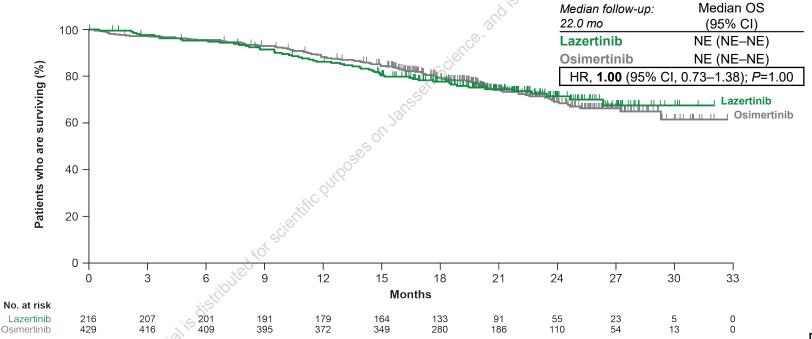
CI, confidence interval; ctDNA, circulating tumor DNA; EGFR, epidermal growth factor receptor; HR, hazard ratio; PFS, progression-free survival; NSCLC, non-small cell lung cancer.


1. Gray JE, et al. Clin Cancer Res. 2023;29(17):3340-3351. 2. Ma S, et al. Transl Lung Cancer Res. 2021;10(1):326-339. 3. Takeyasu Y, et al. JTO Clin Res Rep. 2024;5(2):100636. 4. Soria JC, et al. N Engl J Med. 2018;378(2):113-125.

Time to Symptomatic Progression^a

Pre-planned analysis of TTSP demonstrated comparable results for lazertinib and osimertinib

^aTime from randomization to first onset of new/worsening of lung cancer symptoms requiring a change in therapy, clinical intervention, or death.


CI, confidence interval; HR, hazard ratio; NE, not estimable; TTSP, time to symptomatic progression.

Interim OS

Early data demonstrated comparable survival outcomes between lazertinib and osimertinib

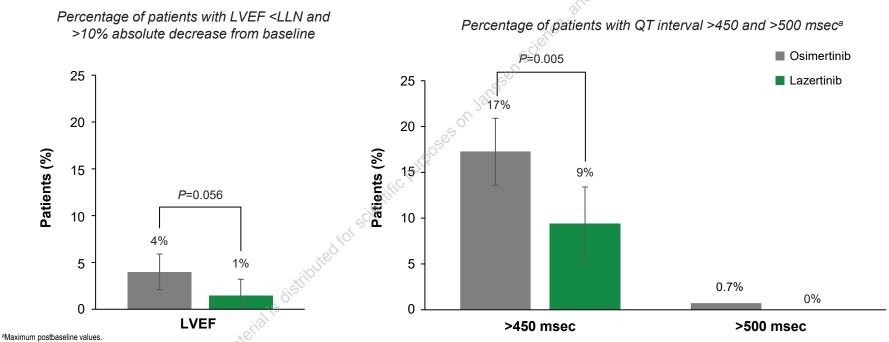
Safety Profile

The safety profiles for each agent were consistent with prior reports^{1,2}

- Most individual TEAEs were grade 1–2 for osimertinib and lazertinib
 - Serious AEs were similar: 33% versus 35%
 - AEs leading to death were comparable and low: 7% versus 6%
 - Rates of ILD^a were comparable and low:
 3% versus 3%
- Osimertinib had higher rates of diarrhea (44% vs 32%), thrombocytopenia (20% vs 9%), and neutropenia (13% vs 3%) versus lazertinib
- Lazertinib had higher rates of rash (45% vs 31%), muscle spasms (23% vs 7%), and paresthesia (15% vs 6%) versus osimertinib
- Treatment-related discontinuations were comparable and low: 3% versus 5%

.6			
Osimertinib (n=428)		Lazertinib (n=213)	
Grade 1–2	Grade ≥3	Grade 1–2	Grade ≥3
187 (44)	3 (1)	64 (30)	4 (2)
128 (30)	3 (1)	91 (43)	4 (2)
119 (28)	2 (0.5)	59 (28)	2 (1)
89 (21)	1 (0.2)	37 (17)	1 (0.5)
55 (13)	0	45 (21)	0
94 (22)	9 (2)	39 (18)	3 (1)
88 (21)	0	36 (17)	1 (0.5)
84 (20)	7 (2)	40 (19)	3 (1)
79 (18)	5 (1)	19 (9)	1 (0.5)
53 (12)	5 (1)	42 (20)	3 (1)
49 (11)	8 (2)	44 (21)	6 (3)
32 (7)	0	49 (23)	1 (0.5)
	Osimertin Grade 1–2 187 (44) 128 (30) 119 (28) 89 (21) 55 (13) 94 (22) 88 (21) 84 (20) 79 (18) 53 (12) 49 (11)	Osimertinib (n=428) Grade 1–2 Grade ≥3 187 (44) 3 (1) 128 (30) 3 (1) 119 (28) 2 (0.5) 89 (21) 1 (0.2) 55 (13) 0 94 (22) 9 (2) 88 (21) 0 84 (20) 7 (2) 79 (18) 5 (1) 53 (12) 5 (1) 49 (11) 8 (2)	Osimertinib (n=428) Lazertinil Grade 1-2 Grade ≥3 Grade 1-2 187 (44) 3 (1) 64 (30) 128 (30) 3 (1) 91 (43) 119 (28) 2 (0.5) 59 (28) 89 (21) 1 (0.2) 37 (17) 55 (13) 0 45 (21) 94 (22) 9 (2) 39 (18) 88 (21) 0 36 (17) 84 (20) 7 (2) 40 (19) 79 (18) 5 (1) 19 (9) 53 (12) 5 (1) 42 (20) 49 (11) 8 (2) 44 (21)

alncludes ILD and pneumonitis


AE, adverse event; ALT, alanine aminotransferase; AST, aspartate aminotransferase; EGFR, epidermal growth factor receptor; ILD, interstitial lung disease; TEAE, treatment-emergent adverse event. 1. Cho BC, et al. J Clin Oncol. 2023;41(26):4208–4217. 2. Soria JC, et al. N Engl J Med. 2018;378(2):113–125.

LVEF Worsening and QT Interval Prolongation

Lazertinib had a reduced risk of cardiomyopathy and significantly lowered rates of QT interval prolongation versus osimertinib

Conclusions

- Lazertinib demonstrated comparable efficacy versus osimertinib across all clinical endpoints, including in high-risk subgroups
- Safety profiles of both lazertinib and osimertinib included mostly grade 1–2 AEs with low and comparable rates of treatment-related discontinuations
- Consistent with lazertinib's suitable combinability profile, key safety distinctions between lazertinib and osimertinib include:
 - Lower rates of diarrhea, thrombocytopenia, and neutropenia with lazertinib
 - Higher rates of rash, muscle spasms, and paresthesia with lazertinib
 - Lower rates of QT interval prolongation and cardiomyopathy with lazertinib

Lazertinib in combination with amivantamab is now FDA approved for patients with treatment-naïve, *EGFR*-mutant advanced NSCLC^{1,2}

Other Amivantamab Presentations at WCLC 2024

Longer follow-up of amivantamab + lazertinib vs osimertinib in first-line *EGFR*-mutant advanced NSCLC

<u>Sunday, Sep 8 10:47-10:57am</u> (OA02.03; Gadgeel)

Patient-relevant outcomes of amivantamab + lazertinib vs osimertinib in first-line EGFR-mutant advanced NSCLC

<u>Tuesday, Sep 10 1:55-2:00pm</u> (MA12.07; Nguyen)

Subcutaneous vs intravenous amivantamab: patient satisfaction and resource utilization results

Monday, Sep 9 11:07-11:17am (OA09.05: Alexander)

High-risk biomarker subpopulations from patients with EGFR Ex20ins in PAPILLON

<u>Tuesday, Sep 10 1:50-1:55pm</u> (MA12.06; Goldman)

Preventing infusion-related reactions with intravenous amivantamab: primary results

<u>Tuesday, Sep 10 2:00-2:05pm</u> (MA12.08; Lopes)

Development of a patient-friendly lung cancer lexicon:

<u>Sunday, Sep 8 6:15-7:45pm</u> (P2.16F.03; Feldman)

Poster tour: Monday, Sep 9 6:45-6:53pm

Additional posters:

- COCOON TIP: Enhanced vs standard dematologic management with amivantamab + lazertinib in advanced NSCLC: Monday, Sep 9 12:00-2:00pm (P3.12D.04; Cho)
- PolyDamas TiP: Amivantamab + cetrelimab in advanced NSCLC: Virtual ePoster (EP.12H.02; Voon)
- 5-year survival estimates with 1L osimertinib for EGFR-mutant advanced NSCLC in the US: Virtual ePoster (EP.12A.03; Sabari)

Acknowledgments

- Patients who participated in the study and their families and caregivers
- Physicians and nurses who cared for patients, and the staff members who supported this clinical trial
- Staff members at the study sites and involved in data collection/analyses
- Medical writing assistance was provided by Lumanity Communications Inc., and was funded by Janssen Global Services, LLC

A total of 1074 patients from 27 countries were randomized in the MARIPOSA study

