P-020

Treatment Positioning Model to Evaluate the Survival Benefit of Ciltacabtagene Autoleucel in Second-Line Compared With Later-Line Treatment of Lenalidomide-Refractory Multiple Myeloma

Rafael Fonseca¹, Eunju Todd², Sandhya Nair³, João Mendes⁴, Jianming He⁴, Seina Lee⁵, Thomas G Martin⁶

¹Mayo Clinic, Phoenix, AZ, USA; ²Janssen-Cilag, London, UK; ³Janssen Pharmaceutica NV, Beerse, Belgium; ⁴Janssen Global Services, Raritan, NJ, USA; ⁵Janssen Research & Development, Titusville, NJ, USA; ⁶University of California, San Francisco, San Francisco, CA, USA

Key Takeaway

Our simulation model suggests that using cilta-cel earlier in the disease course, as early as 2L, may result in better survival than using it for later LOT

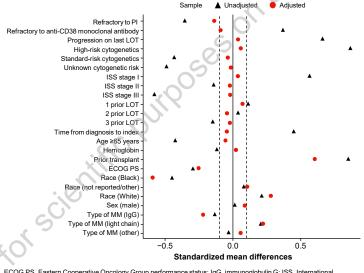
Conclusions

Our simulation model estimated a longer survival benefit when using cilta-cel in 2L as opposed to using cilta-cel in 3L+

Models testing alternative distribution models as well as alternative attrition rates suggested longer OS with cilta-cel in 2L as opposed to using cilta-cel in 3L+

Continued investigation with additional real-world data is needed to further evaluate this model

Introduction


- Patients with lenalidomide-refractory multiple myeloma (MM) with 1–3 prior lines of therapy (LOT) have poor outcomes^{1,2}
- Earlier use of chimeric antigen receptor (CAR)-T cell therapies in these patients could lead to improved treatment responses, fewer patients lost to attrition,^{3,4} and improved long-term outcomes
- The CARTITUDE-4 study (NCT04181827) evaluated ciltacabtagene autoleucel (cilta-cel) vs physicians' choice of daratumumab, pomalidomide, and dexamethasone or pomalidomide, bortezomib, and dexamethasone, in patients with lenalidomide-refractory MM after 1–3 prior LOT⁵
- At 15.9-month median follow-up, cilta-cel vs standard of care (SOC) improved progression-free survival (hazard ratio, 0.26 [protocol-specified weighted analysis] and 0.40 [protocol-specified unweighted analysis], both *P*<0.001)
- Overall survival (OS) data were immature at the time of data cut
- A modeling approach was adapted to evaluate the survival benefit of using cilta-cel vs SOC, from CARTITUDE-4 and the Flatiron Health MM database, earlier in the treatment pathway in patients with relapsed, lenalidomide-refractory MM

Results

Databases

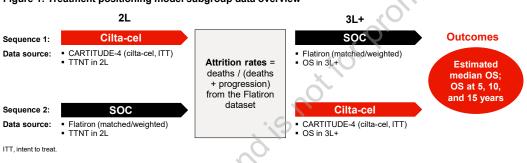
- The cilta-cel arm of CARTITUDE-4 consisted of 208 patients (median follow-up, 15.9 months [range, 0.1–27.3])
- The adjusted Flatiron cohort consisted of 1977 observations (data from February 2016–December 2022; median follow-up, 33.8 months [range, 31.7–36.1])
- In this simulation model, key prognostic factors and treatment effect modifiers from CARTITUDE-4 (cilta-cel) and Flatiron (SOC) subgroups were matched and weighted (Figure 2)

Figure 2: Flatiron population matched to CARTITUDE-4 population

ECOG PS, Eastern Cooperative Oncology Group performance status; IgG, immunoglobulin G; ISS, International Staging System; PI, proteasome inhibitor.

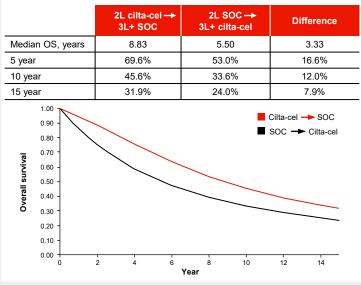
• The base case settings used in the model are detailed in Table 1

Table 1: Base case settings


Table 1: base case settings		
Patient characteristics		
Starting age, years	60.1	
Female, %	42.7	

Methods

- A Markov model was used to compare the survival benefit of using cilta-cel in second-line (2L) followed by SOC in third-line (3L) or more vs 2L SOC followed by 3L+ cilta-cel
 - SOC therapies used may differ in 2L vs 3L+
- CARTITUDE-4 and the Flatiron Health MM database were used for the efficacy of cilta-cel and SOC, respectively (**Figure 1**)
- The Flatiron Health MM database provides realworld data from de-identified patients and is a resource for evaluating various SOC therapies⁶
- 2L cilta-cel was defined as CARTITUDE-4 patients who received 1 prior LOT; 3L+ cilta-cel patients received 2–3 prior LOT


Figure 1: Treatment positioning model subgroup data overview

- SOC was defined based on treatment regimens received by patients with lenalidomide-refractory MM previously treated in 2L and 3L+, with different distributions of treatments between 2L and 3L+
- Inclusion/exclusion criteria of the CARTITUDE-4 population were applied to the SOC population from the Flatiron cohort and weighted on key prognostic factors and treatment effect modifiers
- Time spent in 2L was defined by time to next treatment (TTNT) and attrition rate in patients on 2L; time spent in 3L+ was defined by OS in patients on 3L+
- Standard parametric survival models were used to estimate the transition probabilities over time
- Attrition rates were assumed to be the same in both arms7

According to this simulation model, using cilta-cel in 2L resulted in longer OS benefit compared with using cilta-cel in 3L+ after SOC (8.8 vs 5.5 years, respectively; **Figure 4**)

Figure 4: OS (base case)

- Alternative long-term efficacy assumptions were tested using different distribution models for parametric extrapolations (**Table 2**)
- The predicted OS was longer when using cilta-cel in 2L compared to 3L+ after SOC (8.2 vs 5.4 years, respectively)
- Alternative attrition rates (44.6%) were also tested, which included censored patients (Table 2)
- The predicted OS was longer when using cilta-cel in 2L compared to using cilta-cel in 3L+ after SOC (7.4 vs 3.0 years, respectively)
- Alternative scenario analyses (data not shown) consistently demonstrated the survival benefit of using cilta-cel earlier vs later

Table 2: OS (alternative distribution and attrition rates)

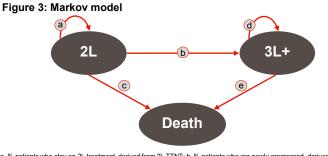
2L cilta-cel→	2L SOC→	Difference
3L+ SOC	3L+ cilta-cel	Difference

https://www.congresshub.com/Oncology/IMS2024/Cilta-cel/Fonsec

The QR code is intended to provide scientific information for individual reference, and the information should not be altered or reproduced in any way.

Acknowledgments

This study was funded by Janssen Research & Development, LLC, and Legend Biotech USA Inc. Medica writing support was provided by Rebekah Dedrick, PhD, of Eloquent Scientific Solutions, and funded by Janssen Global Services, LLC.


Disclosures

RF is a consultant for AbbVie, Adaptive, Amgen, Apple, BMS/Celgene, CSK, Janssen, Karyopharm, Pfizer, RA Capitol, Regeneron, and Sanofi, is a member of the Scientific Advisory Board for Caris Life Sciences; is a member of the Board of Directors of Antengene, and holds a patent for FISH in MM.

Survival extrapolation	
General population mortality adjustment	Yes
Flatiron population adjustment	Adjusted (as per Figure 2)
Attrition rate, %	17.1 (applied to both arms)

Modeling

A Markov model, including 2L, 3L+, and death was used (Figure 3)

a, % patients who stay on 2L treatment, derived from 2L TTNT; b, % patients who are newly progressed, derived from 2L TTNT and attrition rate; c, % death during 2L treatment, derived from 2L TTNT and attrition rate; d, % patients who stay on 3L+ treatment, derived from 2L TTNT and 3L OS; e, % death during 3L+ treatment, derived from 2L TTNT and 3L OS.

References

Alternative distribution model	Median OS, years	8.17	5.42	2.75
	5 year	68.2%	52.6%	15.6%
	10 year	42.1%	33.8%	8.2%
	15 year	27.6%	24.5%	3.1%
Alternative attrition rates	Median OS, years	7.42	3.00	4.42
	5 year	61.9%	38.2%	23.6%
	10 year	41.0%	23.4%	17.6%
	15 year	29.4%	16.5%	12.8%

Limitations

- Attrition rates in CAR-T patients are unknown, therefore the model assumed the same attrition rate as with SOC
- Utilizing a combination of data sources from clinical trials and real-world evidence poses challenges; however, it is currently the most effective approach available, and the objective of this study was to simulate against SOC
- The prespecified primary analysis of CARTITUDE-4 had a median follow-up of 15.9 months; additional follow-up is required to determine long-term efficacy
- Future validation of our treatment positioning model will be completed
 with a later CARTITUDE-4 data cut
- Dhakal B, et al. HemaSphere 2022;6(supplement):790-1.2. Dhakal B, et al. Blood 2022;140(supplement 1):4320-2.3. Fonseca R, et al. BMC Cancer, 2020;20:1087-98.
 Dhakal B, et al. Blood Adv. Online ahead of print, Aug 7, 2024. doi:10.1182/bloodadvances.2024012640.5. San-Miguel J, et al. N Engl J Med 2023;389:335-47.
 Fiatiron Health Database. Accessed J Uly 17, 2024. https://lation.com/. 7. Fonseca R, et al. Oncogis/2023;28:e263-9.

Multiple Myeloma

