Talquetamab vs Real-World Physician's Choice in Patients With Relapsed/Refractory Multiple Myeloma and Prior B-Cell Maturation Antigen Therapy: Analyses of MonumenTAL-1 vs LocoMMotion/MoMMent

María-Victoria Mateos1, Andrzej Jakubowiak2 Hermann Einsele³, Carolina Schinke⁴, Britta Besemer⁵, Sébastien Anguille⁶, Salomon Manier⁷, Leo Rasche⁸, Hartmut Goldschmidt9, Niels WCJ van de Donk10 Aurore Perrot¹¹, Raphael Teipel¹², Lionel Karlin¹³, Christof Scheid¹⁴, Jesús San-Miguel¹⁵ Charlotte Pawlyn¹⁶, Joaquín Martinez-Lopez¹⁷, Michele Cavo¹⁸, Joris Diels¹⁹, Thomas Renaud²⁰, Oleksiy Orel²¹, Jedelyn Cabrieto¹⁹, Nolen Perualila¹⁹, Katja Weisel²², Philippe Moreau²³

¹University Hospital of Salamanca/IBSAL/CIC/CIBERONC, Salamanca, Spain; ²University of Chicago, Chicago, IL, USA; ³Universitäskiinikum Würzburg, Medzinische Klinik und Poliklinik II, Würzburg, Germany; ⁴Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA; ⁴University of Tübingen, emrany; ⁴Vaccine and Infectious Disease Institute, Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium; ⁷University of Lille, CHU Lille, Lille, France; ⁴University Hospital, Edegem, Belgium; ⁷University of Lille, CHU Lille, Lille, France; ⁴University Hospital, Edegem, Belgium; ⁷University of Lulle, CHU Lille, Lille, France; ⁴University Hospital of Würzburg, Germany; ⁴Natesteralm University Medical Center, Vrije University Hospital Ansterdam, Amsterdam, Netherlands; ¹¹Centre Hospitalier Universitate de Toulouse, Concopie, Foulouse, France; ⁴¹Medizinische, France; ⁴¹University of Cologne, Cologne, Germany; ¹⁰Clinica Universidad de Navarra, CCUN, CIMA; IDISNA, CIBERONC, Pamplona, Spani; ¹¹The Institute of Cancer Research, London, UK, and The Royal Marsden NHS Foundation Trust, London, UK; ¹¹Hematological Malignancies Clinical Research Unit, Hospital 12 de Octubre Universidad Compluterse, Centro Nacional de Investigationes Oncologias, CIBERONC, Madrid, Spain; ¹¹IRCCS Azienda Ospedaliero-Universitata di Bologna, Eds; ¹¹Janssen Pharmaceutica NV, Beerse, Belgium; ²¹Janssen Research & Development, Raritan, NJ, USA; ²¹Janssen-Cliag GmbH, Neuss, Germany; ²¹Hematology Clinic, University Hospital Hotel-Dieu, Nantes, France

Key Takeaway

These analyses demonstrate clinical benefit and superior efficacy of talquetamab vs RWPC in patients with TCE RRMM and prior BCMA TCR

Conclusions

Patients with prior BCMA TCR who were treated with talquetamab were significantly more likely to achieve responses, especially deep responses, and had significantly improved PFS and OS compared with patients treated with RWPC

(i)

Clinical benefit was observed with talquetamab vs RWPC in patients who received either prior BCMA CAR-T or prior BCMA BsAb therapy

Introduction

Results

- T-cell redirection therapy (TCR), including B-cell maturation antigen (BCMA)-targeted chimeric antigen receptor (CAR)-T cells and bispecific antibodies (BsAbs), are new treatment options for patients with triple-class exposed (TCE) relapsed/refractory multiple myeloma (RRMM) but result in an unmet need for patients who relapse after TCR1.2
- Talquetamab is the first G protein-coupled receptor family C group 5 member D-targeting BsAb approved for the treatment of patients with TCE RRMM3-5
- At a previous data cut-off (DCO), overall response rates (ORRs) with talquetamab were 72.9% and 56.5% in patients treated with prior BCMA CAR-T and prior BCMA BsAb therapy, respectively, in the MonumenTAL-1 study (NCT03399799/NCT04634552)6
- LocoMMotion (NCT04035226) and MoMMent (NCT05160584) are 2 prospective, consecutive, observational studies evaluating clinical outcomes with real-world physician's choice of treatment (RWPC) in patients with TCE RRMM7,8
- As MonumenTAL-1 was a single-arm study, adjusted comparisons can help determine the relative efficacy of talquetamab vs other treatments
- We present results of talquetamab vs RWPC in patients with prior BCMA TCR

by 25.0% and 41.7% of patients, respectively (Table 1)

Baseline characteristics and treatments

received both prior CAR-T and BsAb

Methods

Data sources

- An adjusted treatment comparison was performed using individual patient data (IPD) for patients with prior BCMA TCR and who received subcutaneous talquetamab 0.4 mg/kg weekly (QW) or 0.8 mg/kg every other week (Q2W) (MonumenTAL-1: DCO, Jan 2024) or RWPC therapies (LocoMMotion: final data; MoMMent: DCO, Aug 2023)
- IPD from talquetamab 0.4 mg/kg QW and 0.8 mg/kg Q2W dosing were pooled from patients with prior BCMA TCR who met MonumenTAL-1 eligibility criteria (Figure 1)

Adjusted treatment comparison

For the base case analysis, multivariable regression was used to adjust for imbalances in refractory status, International Staging System (ISS) stage, time to progression on prior line of therapy (LOT), number of prior LOT, time since diagnosis, presence of extramedullary plasmacytomas, Eastern Cooperative Oncology Group performance status (ECOG PS), lactate dehydrogenase levels, hemoglobin levels, and creatinine clearance

Statistical analysis

- ORR was analyzed using multivariable logistic regression to estimate odds ratios, relative risk (RR), and 95% Cls
- Progression-free survival (PFS) and overall survival (OS) were analyzed using multivariable Cox proportional hazards regression to estimate hazard ratios (HRs) and 95% CIs
- A sensitivity analysis, including additional adjustments for age, sex, multiple myeloma type, average duration of prior LOT, and prior autologous stem cell transplantation, was also performed
- An additional sensitivity analysis, adjusting for whether or not a TCR was received in last LOT, was also performed on top of the base case analysis
- Figure 1: MonumenTAL-1 key patient eligibility criteria

MonumenTAL-1 (n=74) and RWPC (n=36)

 Hemoglobin ≥8 g/dL Creatinine clearance ≥40 mL/min/1.73 m²

- Base case analysis showed superior efficacy of talquetamab in patients with prior BCMA TCR across all endpoints (Table 3), vs RWPC
 - ORR was 64.9% for talquetamab vs 11.1% for RWPC
- PFS (Figure 2) and OS (Figure 3) were also improved with talquetamab vs RWPC
- In subgroup analyses, efficacy outcomes were improved in patients who received talquetamab vs RWPC following BCMA CAR-T and BCMA BsAb, respectively:
 - ORR was 70.4% and 56.0% in patients treated with talquetamab and 20.0% and 4.2% in patients who received RWPC (Figure 4)
- Median PFS (95% CI) was 12.3 (4.2-22.2) and 4.1 (2.9-7.7) months in patients treated with talquetamab and 2.3 (1.2-not estimable [NE]) and 2.1 (1.5-4.1) months in patients who received RWPC
- Median OS (95% CI) was 27.1 (19.7-NE) and 14.0 (8.2-NE) months in patients treated with talquetamab and 7.4 (4.1-NE) and 8.9 (5.4-14.5) months in patients who received RWPC

Results were generally consistent across sensitivity analyses

Table 1: Key baseline characteristics RWPC (n=74) (n=36) Age, years, n (%) <65 46 (62.2) 20 (55.6) 28 (37.8) 16 (44.4) ≥65 48 (64.9) 27 (75.0) Male, n (%) 4 (11.1) 24 (32.4) Extramedullary plasmacytomas ≥1,^a n (%) ISS stage, n (%) 37 (50.0) 9 (25.0) 12 (33.3) Ш 24 (32.4) 13 (17.6) 15 (41.7) Ш Prior LOT, n (%) ≤4 18 (24.3) 4 (11.1) 56 (75.7) 32 (88.9) >4 Time since end of last TCR, months, median (range) 9.9 (0.76-59.8) 4.0 (0.03-36.8) TCR in last LOT CAR-T 33 (44.6) 9 (25.0) BsAb 7 (9.5) 15 (41.7) Refractory status,^b n (%) 22 (29.7) 15 (41.7) Double- or triple-class 21 (28.4) 10 (27.8) Quad Penta-drug 31 (41.9) 11 (30.6)

vs BsAb (n=20/74, 27.0%) in the talquetamab cohorts, whereas more patients

received BsAb (n=21/36, 58.3%) vs CAR-T (n=12/36, 33.3%) in the RWPC cohort;

5 (6.8%) patients in the talquetamab cohort and 3 (8.3%) patients in the RWPC cohort

In last LOT prior to talquetamab, CAR-T and BsAb were received by 44.6% and 9.5%

of patients, respectively; in last LOT prior to RWPC, CAR-T and BsAb were received

In the RWPC cohort, the most common regimens received were teclistamab and a combination of cyclophosphamide, pomalidomide, and dexamethasone (Table 2)

Frue extramedullary disease is restricted to soft tissue plasmacytomas that arise due to hematogenous spread and have no contact ith bony structures.⁹ Only true extramedullary disease soft tissue lesions were analyzed in MonumenTAL-1, while both paraskeletal sions and/or true extramedullary disease soft tissue lesions were analyzed in LocoMMotion and MoMMent. "Referatoriness

Table 2: Treatment regimens in the RWPC cohort

Treatment regimen	Frequency, n (%) (n=36)ª
Teclistamab	5 (13.9)
Cyclophosphamide, pomalidomide, and dexamethasone	5 (13.9)
Isatuximab, pomalidomide, and dexamethasone	2 (5.6)

Among prior BCMA TCR received, more patients received CAR-T (n=49/74, 66.2%)

Efficacy outcomes

TCE RRMM

≥3 prior LOT

• ECOG PS ≤2

Prior BCMA TCR

These results support talquetamab as a novel, highly effective treatment option not only for BCMA-naive patients, but also for patients with prior exposure to BCMA TCR

Please scan QR code Poster

shub.com/Oncology/IMS2024/Talquetamab/Mateos-Talq

The QR code is intended to provide scientific information for individual reference, and the information should not be altered or reproduced in any way.

Pomalidomide and dexamethasone	2 (5.6)
Bortezomib, venetoclax, and dexamethasone	2 (5.6)
Regimens in single patients ^b	
PI regimens ^c	7 (19.4)
Single agents ^d	4 (11.1)
IMiD and anti-CD38 mAb regimens	2 (5.6)
Chemotherapy regimens	2 (5.6)
PI, IMID, and anti-CD38 mAb regimens	2 (5.6)
CAR-T therapy ^e	1 (2.8)
IMiD regimen	1 (2.8)
PL and anti CD38 mAb regimen	1 (2.8)

Percentages calculated with the number of patients in the all-treated analysis set as denominator (n=36). ^bTreatment regimens received by single patients are grouped by class. ^{c1} patient received a PI regimen containing selinexor. ^{c1} patient each received belantamab mardodin, bendamustine, pomalidomide, and venetoclax. ^{c2}CAR-T regimen comprised of idecablagene vicleucel, cyclophosphamide, and fludarabine. IMID, immunomodulatory drug; mAb, monocional antibody; PI, proteasome inhibitor.

Table 3: Treatment outcomes with talquetamab vs RWPC

Outcome	Talquetamab (n=74) vs RWPC (n=36)	
	RR (95% CI)	<i>P</i> value
ORR	6.42 (2.54–16.25)	<0.0001
VGPR	10.17 (2.45–42.24)	0.0012
	HR (95% CI)	<i>P</i> value
PFS	0.53 (0.29–0.98)	0.0423
OS	0.32 (0.17–0.63)	0.0008

VGPR, very good partial response

Figure 4: ORR^a 100 ≥CR VGPR PR Talquetamab 80 70.4 (38/54) 56.0 % (14/25) 60 Patients. 46.3 40 36.0 RWPC **20.0** (3/15) 20 11.1 8.0 4.2 (1/24)4.2 Prior CAR-T Prior BsAb Prior CAR-T Prior BsAb

^aPatients who received both CAR-T and BsAb prior to talquetamab (n=5) or RWPC (n=3) are includ CR, complete response. PR, partial response. spective ORR col

Gagelmann N, et al. Haematologica 2023;108:2799-802. 2. Swan D, et al. Cancers (Basel) 2023;15:1819. 3. Verkleij CPM, et al. Blood Adv 2021;5:2196-215.
TALVEY[™] (talquetamab-tgvs). Prescribing information. Horsham, PA: Janssen Biotech, Inc; 2023. 5. European Medicines Agency. TALVEY[™] (talquetamab). Accessed July 26, 2024. https://www.ema.europa.eu/en/medicines/humar/summarise-opiniontalvey. 6. Jakuboviak A. et al. Presented at SAL; December 9–12, 2023; an Diego, CA, USA. #3377.
Mateos M, et al. Leukemia 2022;36:1371-6. 8. ClinicalTrials.gov, NCT05160584. Accessed August 6, 2024. 9. Bladé J, et al. Blood Cancer J 2022;12:45.

Multiple Myeloma

Presented by M-V Mateos at the 21st International Myeloma Society (IMS) Annual Meeting; September 25–28, 2024; Rio de Janeiro, Brazil