Jing Christine Ye¹, Carolina Schinke², Cyrille Touzeau³, Monique C Minnema⁴, Niels WCJ van de Donk⁵ Paula Rodríguez-Otero⁶, María-Victoria Mateos Leo Rasche⁹, Deeksha Vishwamitra⁹, Indrajeet Singh⁹, Xiang Qin⁹, Michela Campagna¹⁰, Tara Masterson⁹, Brandi W Hilder⁹, Jaszianne Tolbert⁹, Thomas Renaud¹¹, Christoph Heuck⁹, Colleen Kane⁹, Ajai Chari¹²

1MD Anderson Cancer Center, University of Texas, Houston, TX, USA; ²Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA; ³Centre Hospitalier Universitaire de Nantes, Nantes, France; ⁴University Medical Center Utrecht, Utrecht, Netherlands; ⁵Amsterdam University Medical Center, Util: Utrechter Utrechter, Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands; ⁶Clínica Universidad de Navarra, CIMA, CIBERONC, IDISNA, Pamplona, Spain; 7University Hospital of Salamanca Partipiona, Spain, "University Prospirat of Satamarica /IISAL/CIC/IERCNOK, Salamanca, Spain, "University Hospital of Würzburg, Würzburg, Germany; ⁹Janssen Research & Development, Madrid, Spain; ¹¹Janssen Research & Development, Raritan, NJ, USA; ¹²Mount Sinai School of Medicine, New York, NY, USA, at the time that the work was performed. performed

Key Takeaway

P-098

With long-term follow-up, talquetamab continues to demonstrate deep and durable responses and no new safety signals in patients with RRMM

Conclusions

High ORRs of ≥70% in the QW and Q2W TCR-naive cohorts and 67% in the prior TCR cohort were achieved with long-term follow-up at the approved talquetamab doses

Patients continued to demonstrate durable responses, with longer DORs observed in patients with deeper response

The safety profile was consistent with previous reports; together with the efficacy data, these results highlight the overall clinical benefit of the approved

Introduction

- Talquetamab is the first approved bispecific antibody (BsAb) targeting the novel antigen G protein-coupled receptor class C group 5 member D (GPRC5D) for the treatment of patients with relapsed/refractory multiple myeloma (RRMM)^{1,2}
- In previously reported results from MonumenTAL-1, talquetamab showed overall response rates (ORRs) of >71% in patients naive to prior T-cell redirection therapy (TCR) and 65% in patients with prior TCR at the approved subcutaneous (SC) doses of 0.4 mg/kg weekly (QW) and 0.8 mg/kg every other week (Q2W)³
- Exposure-response (E-R) analyses showed increased ORRs with SC doses that plateaued at or above the approved doses (Supplemental Figure 1)4,5
- An E-R relationship was observed for grade 1/2 dysgeusia; however, rates were similar at both approved doses (Supplemental Figure 2)4.5
- Early onset of GPRC5D-related adverse events (AEs), including dysgeusia, is associated with a higher likelihood of response; prior data support flexibility to adjust talquetamab dosing in responders to mitigate AEs while maintaining efficacy6
- Here, we report the long-term follow-up results of patients receiving talquetamab at the approved doses

Results

Baseline characteristics

Baseline characteristics across the QW, Q2W, and prior TCR cohorts were similar to previous reports,³ with the exception of more African American patients in the current analysis (n=32/375, 9%)

Efficacy

- As of January 29, 2024, ORR was 74%, 70%, and 67% for patients in the QW, Q2W, and prior TCR cohorts, respectively, with very good partial response (VGPR) or better rates >55% across cohorts (Supplemental Figure 3)
 - ORRs were consistent across high-risk subgroups, except patients with extramedullary disease, who had lower ORRs (Supplemental Table 1)
 - In patients with prior TCR, ORR was 71% (n=40/56) with prior chimeric antigen receptor (CAR)-T cell therapy and 58% (n=15/26) with prior BsAb therapy
- Median time to first response (range) was 1.2 (0.2-10.9), 1.3 (0.2-4.9), and 1.2 (0.2-7.5) mo, respectively
- Median time to VGPR as best response was 2.2 (0.8-6.2), 2.3 (0.3-18.9), and 1.8 (0.8-6.4) mo and to complete response (CR) or better as best response was 3.0 (1.1-12.7), 5.8 (1.2-16.8), and 2.7 (1.2-18.7) mo, respectively
- DOR, PFS, and OS are shown in Table 1
- Better durability was observed in the Q2W vs QW cohort In patients with prior TCR, the median PFS (mPFS) was 12.3 mo with
- prior CAR-T cell therapy and 4.1 mo with prior BsAb therapy In the Q2W cohort, patients receiving ≤4 vs ≥5 prior LOT had improved DOR (**Figure 2**), PFS (median 17.8 vs 8.5 mo), and OS (24-mo rate 75% vs 59%), indicating potential for better outcomes in earlier LOT; no differences by prior LOT were observed in the QW cohort
- In the Q2W cohort, 40% of patients achieved a ≥CR, most by ~12 mo (Figure 3A); although a ≥CR may take longer to achieve, patients with deeper responses had a longer DOR (Figure 3B)

Table 1: Efficacy outcomes

Outcome	0.4 mg/kg SC QW (n=143)	0.8 mg/kg SC Q2W (n=154)	Prior TCR (n=78)
mFU, mo	29.8	23.4	20.5
mDOR, mo (95% CI) ^a	9.5 (6.7–13.4)	17.5 (12.5–NE)	N/A ^b
mDOR in patients with ≥CR, mo (95% CI)	28.6 (19.4–NE)	NR (21.2–NE)	N/A ^b
mPFS, mo (95% CI)	7.5 (5.7–9.4)	11.2 (8.4–14.6)	7.7 (4.1–14.5)
24-mo OS rate, % (95% CI)	60.6 (51.7-68.4)	67.1 (58.3–74.4)	57.3 (43.5-68.9)
=106 (QW), n=107 (Q2W), and n=52 (prior TCR). ^b Not iable at this time point. See Supplemental Table 2 for response; mFU, median follow-up; N/A, not available;	reported due to heavy censo efficacy outcomes in the US NE, not estimable; NR, not re	pring from 12 to 20 mo; the PI population (≥4 prior LOT eached; USPI, United State	estimate may not be). mDOR, median durati s prescribing information

Methods

MonumenTAL-1 (NCT03399799/NCT04634552) enrolled patients with RRMM who were naive or exposed to prior TCR (Figure 1)

Figure 1: MonumenTAL-1 phase 1/2 study design

ational Myeloma Working Group criteria.^{7,8}°CRS and ICANS were graded by 1.03. ASTCT, American Society of Transplantation and Cellular Therapy; minology Criteria for Adverse Events; DOR, duration of response; ECOG PS, s; ICANS, immune effector cell-associated neurotoxicity syndrome; IMD, "With 2–3 step-up doses. *Assessed by IRC using International Myeloma Workir ASTCT criteria?, all other AEs were graded by CTCAE v4.03. ASTCT, American CRS, cytokine release syndrome; CTCAE, common Terminology Criteria for Adi Eastern Cooperative Oncology Group performance status; ICANS, immune effect immunomodulatory duru; IRC, independent crivelax committee: I OT line of thera erative Oncology Gr atory drug; IRC, inde e; LOT, line of

Figure 3: Time to first confirmed response per IRC (A) and DOR by depth of response (B) in the Q2W cohort

Figure 4: Weight loss in patients with oral toxicity^a in the QW and Q2W cohorts

and tongue ulceration. C, cycle; D, day; SD, step-up dose

Figure 5: New-onset grade ≥3 infections over time in the Q2W cohort

talquetamab doses and the flexibility to adjust dosing once response is achieved

Poster K Supplementary material

shub.com/Oncology/IMS2024/Talquetamab/Ye-Long-Term

The QR code is intended to provide scientific information for individual refere altered or reproduced in any way should not b

arch & Development, LLC. Medical writir fic Solutions, and funded by Janssen Glo Reused with permission. This abstract w ress. All rights reserved.

ory role for BMS and Janssen; has received honoraria from BMS a ceived research funding from Celgene, Genmab, GSK, MingSight,

	_	_					-		_				
	0	3	6	9	12	15	18	21	24	27	30	33	36
Patients at risk						0	OR, m	10					
Prior LOT ≤4	57	49	44	42	35	32	27	17	6	3	2	1	0
Prior LOT ≥5	50	43	39	30	23	21	17	11	3	1	1	0	0
				Pri	or LOT ≤	4	-		Prior LC)T ≥5			

Safety

- The safety profile across cohorts was consistent with previous results³; no new safety signals were reported
- Weight loss, as assessed by vital signs, occurred in 39%, 34%, and 39% of patients in the QW, Q2W, and prior TCR cohorts, respectively
 - Weight loss was evident early, then stabilized and improved over time, including in patients with oral toxicities (Figure 4)
- Infection rates remained lower than in studies of BCMA-targeted BsAbs,^{10,11} consistent with previous reports³; no increase in grade 3/4 infections was observed with longer follow-up (shown for the Q2W cohort; Figure 5)
- Modest intravenous immunoglobulin was required (16%, 14%, and 24% of patients, respectively)
- GPRC5D-associated AEs led to few dose reductions and discontinuations (Table 2); only 1 additional patient discontinued treatment since previous report³
- Similarly, overall rates of dose reductions and discontinuations due to AEs remained low at 15%, 10%, and 12% and 5%, 10%, and 5%, respectively
- There were no treatment-related deaths

No. of patients (with event)	154 (23)	117 (6)	89 (0)	73 (1)	58 (2)	51 (1)	47 (1)	37 (0)	17 (1)
---------------------------------	----------	---------	--------	--------	--------	--------	--------	--------	--------

Table 2: GPRC5D-associated AEs

Any-Grade AE, n (%)	0.4 mg/kg SC QW (n=143)	0.8 mg/kg SC Q2W (n=154)	Prior TCR (n=78)	
Taste related ^a				
Total	103 (72.0)	110 (71.4)	59 (75.6)	
Leading to dose reduction	10 (7.0)	6 (3.9)	4 (5.1)	
Leading to discontinuation	0	3 (1.9)	0	
Skin related ^b				
Total	81 (56.6)	113 (73.4) ^e	50 (64.1)	
Leading to dose reduction	5 (3.5)	1 (0.6)	2 (2.6)	
Leading to discontinuation	2 (1.4)	1 (0.6)	0	
Nail related ^c				
Total	79 (55.2)	82 (53.2)	46 (59.0)	
Leading to dose reduction	1 (0.7)	1 (0.6)	1 (1.3)	
Leading to discontinuation	0	0	0	
Rash related ^d				
Total	57 (39.9) ^f	46 (29.9) ^g	25 (32.1) ^h	
Leading to dose reduction	1 (0.7)	1 (0.6)	0	
Leading to discontinuation	0	0	0	

^aIncluding ageusia, dysgeusia, hypogeusia, and taste disorder. ^bIncluding skin exfoliation, dry skin, pruritus, and palmar-plantar erythrodysesthesia syndrome. ^cIncluding nail discoloration, nail disorder, onycholysis, onychomadesis, onychoclasis, nail 4) an exploration of the intermediate in the second atom, then used eff, only choices, only choic

References

Verkleij CPM, et al. Blood Adv 2021;5:2196-215.2. Chari A, et al. Presented at ASH; December 10–13, 2022; New Orleans, LA, USA. #157.3. Schinke C, et al. Presented at ASCO; June 2–6, 2023; Chicago, IL, USA & Virtual. #8041.5. Zhou J, et al. Presented at ASCO; June 2–6, 2023; Chicago, IL, USA & Virtual. #8041.5. Zhou J, et al. Presented at ACOP; November 5–8, 2023; Oxon Hill, MD, USA. #T-015.6. Chari A, et al. Presented at ASH; December 9–12, 2023; San Diego, CA, USA. #1010.
7. Rajkumar SV, et al. Blood 2011;117:4691-5.8. Kumar S, et al. Lancet Oncol 2016;17:328-46.9. Lee DW, et al. Bloid Blood Marrow Transplant 2019;25:625-38. 10. van de Donk NWCJ, et al. Presented at ASCO; June 2–6, 2023; Chicago, IL, USA & Virtual. #8011. 11. Tomasson M, et al. Blood 2023;142 (Supplement 1):3385.

Multiple Myeloma

