Efficacy/Safety of Ciltacabtagene Autoleucel ± Lenalidomide Maintenance in Patients With Multiple Myeloma Who Had Suboptimal Response to Frontline Autologous Stem Cell Transplant: CARTITUDE-2 Cohort D

Yaël C Cohen¹, Wilfried Roeloffzen², Tessa Kerre³ Mounzer Agha⁴, Michel Delforge⁵, Ira Braunschweig⁶, Nishi Shah⁷, Shambavi Richard⁸, Melissa Alsina⁹, Hermann Einsele¹⁰, Pankaj Mistry¹¹, Helen Varsos¹², Christina Corsale¹², Jordan M Schecter¹² Kevin C De Braganca¹², Yogesh Jethava¹² Qingxuan Song¹², Tamar Lengil¹³, Mythili Koneru¹⁴, Muhammad Akram¹⁴, Bertrand Arnulf¹⁵

¹Tel Aviv Sourasky (Ichilov) Medical Center, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel ; Audie Star Health Sciences, Tel Aviv University, Tel Aviv, Israel ; University Medical Center Groningen, Groningen, Netherlands; ³Ghent University Hospital, Ghent, Belgium; ⁴UPMC Hillman Cancer Center, Pittsburgh, PA, USA; ⁵University of Leuven, Leuven, Belgium; ⁶Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA; ⁷Montefiore Medical Center, Bronx, NY, USA; ⁸Icahn School of Medicine at Mount Sinai, New York; NJ, USA; ⁸Icahn School of Medicine at Mount Sinai, New York, NY, USA; 9Moffitt Cancer Center, Tampa, FL, USA; New York, NY, USA; "Motifut Cancer Center, Iampa, HL, USA; "0Universitatklinikum Würzburg, Medizinische Klinik und Poliklinik II, Würzburg, Germany; ¹¹Janssen Research & Development, High Wycombe, UK; ¹²Janssen Research & Development, Raritan, NJ, USA; "Jaansen Global Services, Raritan, NJ, USA; ¹⁴Legend Biotech USA Inc., Somerset, NJ, USA; ¹⁵Saint-Louis Hospital, APHP, University Paris Cité, Paris, France

Key Takeaway

In patients with a suboptimal response after ASCT frontline therapy, efficacy and safety with cilta-cel ± lenalidomide maintenance is promising, especially given the historically poor clinical outcomes of this patient population

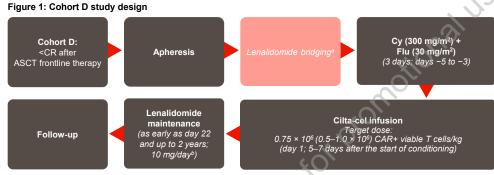
Conclusions

In patients with <CR after frontline ASCT, a single cilta-cel infusion ± lenalidomide maintenance demonstrated deep and durable responses

- ORR was 94.1%, 18-month DOR was 93.3%, and MRD negativity occurred in 80.0% of patients
- 18-month PFS and OS rates were 93.8% each
- CAR-T cell expansion was robust

AEs were consistent with the known safety profile of cilta-cel

- No cases of grade 3 or 4 CRS or **ICANS**
- No cases of movement and neurocognitive TEAEs/parkinsonism


Introduction

- Ciltacabtagene autoleucel (cilta-cel), a B-cell maturation antigen-targeting chimeric antigen receptor (CAR)-T cell therapy, has shown deep and durable responses in heavily pretreated patients with relapsed/refractory multiple myeloma (RRMM; CARTITUDE-1)^{1,2} and significant improvement in progression-free survival (PFS) vs standard of care in lenalidomide-refractory patients with multiple myeloma after 1 to 3 prior lines of therapy (LOT; CARTITUDE-4)³
- Cilta-cel was recently approved for the treatment of adult patients with RRMM who have received at least 1 prior LOT, including a proteasome inhibitor (PI) and an immunomodulatory agent (IMiD), and who are refractory to lenalidomide4
- Patients with a suboptimal response after autologous stem cell transplant (ASCT) frontline therapy historically have poor outcomes5-9
- CARTITUDE-2 is a phase 2, multicohort study evaluating cilta-cel across various clinical settings of unmet need10
- CARTITUDE-2 cohort D is evaluating cilta-cel ± lenalidomide maintenance in patients with suboptimal response to frontline ASCT Here, we report initial efficacy and safety data from CARTITUDE-2 cohort D in patients who achieved less
- than complete response (CR) after frontline ASCT after median follow-up of 22.4 months (range, 4.7-39.3)

Methods

- CARTITUDE-2 is a phase 2, multicohort, open-label study (Figure 1)
- The primary endpoint was minimal residual disease (MRD) negativity at 10⁻⁵ threshold using next-generation sequencing or next-generation flow

Secondary endpoints included overall response rate (ORR), assessed per International Myeloma Working Group (IMWG) response criteria; duration of response (DOR); time to response; PFS and overall survival (OS); incidence and severity of adverse events (AEs), including cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity sýndrome (ICAŃS), both of which were graded per American Society for Transplantation and Cellular Therapy criteria¹¹ (all other AEs were graded per Common Terminology Criteria for Adverse Events v5)

lidomide were allowed. ^bPer protocol, safety was assess cita-cel for ≤2 years. Dose of 10 mo/day upon adequate ed in the first 5 patients with native bridging regimens

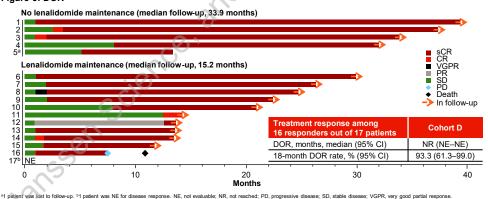
Results

Baseline characteristics

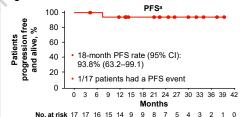
At 22.4-month median follow-up, 17 patients had received cilta-cel (Table 1)

Table 1: Baseline characteristics

Characteristic		N=17
Age, years, median (range)		54.0 (37–69)
Male, n (%)		14 (82.4)
	White	14 (82.4)
Race, n (%)	Black/African American	1 (5.9)
	Not reported	2 (11.8)
ECOG PS at screening,	0	13 (76.5)
n (%)	1	4 (23.5)
Time from initial diagnosis to years, median (range)	0.9 (0.6–1.4)	
Myeloma type by immunofixation, n (%)	lgG	11 (64.7)
	IgA	2 (11.8)
	Light chain, kappa	2 (11.8)
	Negative immunofixation	2 (11.8)
Extramedullary plasmacytomas, n		C 0
High-risk cytogenetics, n (%)ª	C	3 (17.6)
	del(17p)	1 (5.9)
	t(4;14)	2(11.8)
ISS stage I, n (%)	- Y	17 (100)
Prior ASCT, n (%) ^b	0	17 (100)
Prior PI and IMiD, n (%)		17 (100)
Prior anti-CD38 mAb, n (%)		3 (17.6)


Cytogenetic risk abnormalities are based on central FISH testing or local FISH testin, karyotype testing if ciertral FISH is not available. 1 patient was unknown. 14 patient re andem ASCT (we undrewnin ASCT twole), ECOG PSC, Eastern Cooperative Onology performance status; FISH, ilucrescence in situ hybridization; la, immunoglobulin; ISS, international Slagning System; mAb, monoclonal antibody.

Lenalidomide maintenance


recoverv)

- Per protocol, the first 5 patients did not receive, and the last 12 patients initiated lenalidomide maintenance after cilta-cel (10 mg/day upon adequate hematologic
- Median time to initiation: 51.0 days (range, 21-214); median duration: 426.5 days (range, 70–716) Median number of cycles: 15.0 (range, 3–26); median
- overall relative dose intensity: 93.4% (range, 68-100) Efficacy
- ORR was 94.1%; all patients who responded achieved ≥CR (Figure 2; Table 2) Responses to treatment with cilta-cel were durable and
- deepened over time (Figure 3), and high rates of PFS and OS were achieved (Figure 4)

Figure 3: DOR

Figure 4: PFS and OS rates

OS 100 % 80 Patients alive, 60 18-month OS rate (95% CI): 93.8% (63.2–99.1) 40 20 1/17 patients had an OS event 0 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 Months No. at risk 17 17 16 16 15 13 10 9 7 5 4 2 3

Assessed using a validated computerized algorithm

Safety profile

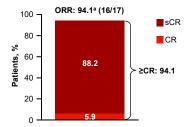
Treatment-emergent AEs (TEAEs) were consistent with the known safety profile of cilta-cel (Tables 3 and 4) 1 case of grade 3

- myelodysplastic syndrome was reported with onset at day 353 and was not treatment related per
- investigator assessment No deaths due to TEAEs at the time of data cut-off
- AEs of special interest were consistent with the known afety profile of cilta-cel (Table 5)
- No cases of movement and neurocognitive TEAEs or parkinsonism were observed, and 1 patient experienced ICANS, which resolved
- Grade 3 or 4 n (%) Any TEAE 17 (100) 17 (100) Serious TEAE 10 (58.8) 9 (52.9) Infections 12 (70.6) 5 (29.4) Neutropenia 16 (94.1) 14 (82.4) Lymphopenia 11 (64.7) 10 (58.8) Hematologic Thrombocytopenia 8 (47.1) 4 (23.5) 7 (41.2) 6 (35.3) Leukopenia 5 (29.4) 1 (5.9) Anemia

Table 4: TEAEs between patients ± lenalidomide maintenance

n (%)		Cohort D (N=17)	Cohort D without lenalidomide (n=5)	Cohort D with lenalidomide (n=12)
Prolonged cytopenias ^a	Neutropenia	1 (5.9)	0	1 (8.3)
	Lymphopenia	5 (29.4)	2 (40.0)	3 (25.0)
	Thrombocytopenia	1 (5.9)	0	1 (8.3)
Grade 3/4 infections		5 (29.4)	1 (20.0)	4 (33.3)

Incidence of prolonged neutropenia and thrombocytopenia was low


com/Oncology/IMS2024/Cilta-cel/Coher

Please scan QR code

Poster

The QR code is intended to provide scientific information for individual refere and the information should not be altered or reproduced in any way.

Figure 2: Overall response assessed using a validated computerized algorithm

tient was lost to follow-up and 1 patient was not evaluable for disease response. *ORR ed as the proportion of patients who achieve a PR or better per IMWG criteria. PR, par onse; sCR, stringent complete response.

Table 2: Cilta-cel efficacy outcomes

Time to response among responders, months, median (range)	Cohort D (N=17)
First response	1.3 (0.9–12.5)
Best response	1.9 (0.9–12.5)
≥CR	1.7 (0.9–12.5)
MRD negativity (10 ⁻⁵), n/N (%)	
Overall	12/17 (70.6)
MRD-evaluable patients ^a	12/15 (80.0)

CAR-T cell expansion profile may differ from RRMM setting

In this population with a low tumor burden, robust CAR-T cell expansion was observed, with a mean (SD) AUC_(0-6m) of 10,376 (7803) days × cells/µL

•	CAR+ CD8+ T cells
	expanded more than CAR+
	CD4+ T cells in blood in
	CARTITUDE-2 cohort D,
	consistent with that observed
	in CARTITUDE-4 ¹² and
	CARTITUDE-1 ¹³ (Figure 5)

aInitial grade 3/4 cytopenias not recovered to grade ≤2 by day 60.

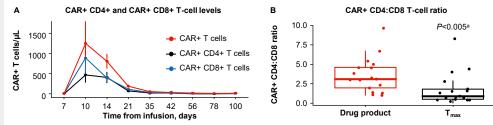

Table 5: AEs of special interest

Table 3: Select TEAEs

Cohort D (N=17)	Any Grade, n (%)	Grade 3/4, n (%)	Median time to onset, days	Median duration, days
CRS	14 (82.4)	0	8.0	2.5
ICANS	1 (5.9)	0	7.0	1.0
Other neurotoxicity ^a	6 (35.3)	1 (5.9)	21.0	111.0

ies (mostly grade 1/2): 3 patients with cranial nerve VII disorders (grade 1 [n=1], ongoing); after 43 days) and oral hypoesthesia (resolved); 1 patient with paresthesia (grade 1, ongoing); pathy. dysafthria, and dysohagia (resolved). opia (grade 3, resolved after

Figure 5: (A) CAR+ CD4+ and CAR+ CD8+ T cells both expanded after infusion (B) CAR+ CD4:CD8 T-cell ratios were lower in blood at ~T_{max} than in drug product

on of CAR+ T cells in blood; T_{max}, sampling time (days post infusion) to reach C_{max}

I. Lin Y, et al. J Clin Oncol 2023;41:8009. 2. Martin T, et al. J Clin Oncol 2023;41:1265-74. 3. San-Miguel J, et al. N Engl J Med 2023;389:335-47. 4. CARVYKTI[#] (cilitacabtagene autoleucel). Pack Jorsham, PA: Janssen Bildech, Inc; 2024. 5. Chanan-Khan AA, et al. J Clin Oncol 2010;28:261-224. 6. Harousseau JL, et al. Biod 2009;114:3139-46. 7. Lahuerta JJ, et al. J Clin Oncol 2008;261-224. 6. Harousseau JL, et al. Biod 2009;114:3139-46. 7. Lahuerta JJ, et al. J Clin Oncol 2008;261-224. 6. Harousseau JL, et al. Biod 2009;114:3139-46. 7. Lahuerta JJ, et al. J Clin Oncol 2008;261:34. 10. Harousseau JL, et al. Biod Biodo 3. and e Vided h. et al. Harematologica 2007;26:129-406. 9. Martinez-Lopez J, et al. Biod 2011;11:15:25-34. 10. Hallion;363: 9. et al. Biod 2020;114:15:25-44. 10. et al. Biod Biodo 7ransplant 2019;25:625-38. 12. de Larea C, et al. Presented at IMS; September 27-30, 2023; Athens, Greece. 13. Zudaire E, et al. Presented at ASH; December 7–10, 2019; Orlando, FL, USA.

Multiple Myeloma

Presented by YC Cohen at the 21st International Myeloma Society (IMS) Annual Meeting; September 25–28, 2024; Rio de Janeiro, Brazil