Roger Li¹ (Roger.Li@moffitt.org), Ja Hyeon Ku², Antoni Vilaseca Cabo³, Felix Guerrero-Ramos⁴, Joshua Meeks⁵, Neil Beeharry⁶, Michelle Quiroz⁶, Jiarui Zhang⁶, Denis Smirnov⁶, Yashoda Rajpurohit⁶, Bethany Brunton⁶, Gabriela Martinez⁶, Carrye Cost⁶, Anna Kalota⁶, Josh Lauring⁶, Nicole L Stone⁶, Shibu Thomas⁶

¹Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL; ²Department of Urology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea; ³Hospital Clínic de Barcelona, Barcelona, Spain; ⁴University Hospital 12 de Octubre, Madrid, Spain; ⁵Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, IL; ⁶Janssen Research & Development, Spring House, PA

Presented by R Li at the 2024 ASCO Genitourinary Cancers Symposium; January 25-27, 2024; San Francisco, CA, USA

https://www.congresshub.com/ Oncology/GU2024/TAR-210/Li

Click anywhere to view

this interactive poster

Copies of this poster obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from ASCO[®] or the author of this poster.

Roger Li¹, Ja Hyeon Ku², Antoni Vilaseca Cabo³, Felix Guerrero-Ramos⁴, Joshua Meeks⁵, Neil Beeharry⁶, Michelle Quiroz⁶, Jiarui Zhang⁶, Denis Smirnov⁶, Yashoda Rajpurohit⁶, Bethany Brunton⁶, Gabriela Martinez⁶, Carrye Cost⁶, Anna Kalota⁶, Josh Lauring⁶, Nicole L Stone⁶, Shibu Thomas⁶

KEY TAKEAWAY

A novel urine-based test for *FGFRalt* eligibility was successfully implemented into the first-in-human study evaluating TAR-210, a novel intravesical drug delivery system that provides sustained, local release of erdafitinib within the bladder, with 27% (7/26) of patients enrolled based on urine alone due to lack of tissue or no *FGFRalt* found in tissue NAVIGATION

KEY TAKEAWAY

CONCLUSIONS

INTRODUCTION

METHODS

FIGURE 1 First-in-human TAR-210 study design and depiction of TAR-210 in the bladder

RESULTS

FIGURE 2 Molecular screening or eligibility by urine and tissue testing TABLE 1

Type and prevalence of *FGFRalt* identified by urine and tissue were similar

RESULTS (CONT)

FIGURE 3

Urine- and tissue-based testing identifies patients that experience clinical benefit from TAR-210

FIGURE 4 Landscape of pathogenic somatic variants detected in urine from all evaluable samples

APPENDIX

FGFRalt, FGFR alterations.

Roger Li¹, Ja Hyeon Ku², Antoni Vilaseca Cabo³, Felix Guerrero-Ramos⁴, Joshua Meeks⁵, Neil Beeharry⁶, Michelle Quiroz⁶, Jiarui Zhang⁶, Denis Smirnov⁶, Yashoda Rajpurohit⁶, Bethany Brunton⁶, Gabriela Martinez⁶, Carrye Cost⁶, Anna Kalota⁶, Josh Lauring⁶, Nicole L Stone⁶, Shibu Thomas⁶

CONCLUSIONS

- \bigcirc
- Implementing a urine-based test expands the molecular testing methods to identify 7 (27%) additional patients that may respond to TAR-210
- The spectrum of genomic alt detected using the urine test was similar to that described in prior studies using tissue-based testing
- All patients in Cohort 3 who were enrolled by urine test showed clinical activity
- Obta highlight that the complex genomic landscape in bladder cancer can be assessed from urine
- Oata from this study support further clinical evaluation of the urine test

		\bigcirc
KEY TAKEA	WAY	
CONCLUSI	ONS	
INTRODUC	TION	
METHODS		

NAVIGATION

RESULTS

FIGURE 2 Molecular screening or eligibility by urine and tissue testing TABLE 1

Type and prevalence of *FGFRalt* identified by urine and tissue were similar

RESULTS (CONT)

FIGURE 3 Urine- and tissue-based testing identifies patients that experience clinical benefit from TAR-210 FIGURE 4

Landscape of pathogenic somatic variants detected in urine from all evaluable samples

APPENDIX

Urothelial Cancer

Roger Li¹, Ja Hyeon Ku², Antoni Vilaseca Cabo³, Felix Guerrero-Ramos⁴, Joshua Meeks⁵, Neil Beeharry⁶, Michelle Quiroz⁶, Jiarui Zhang⁶, Denis Smirnov⁶, Yashoda Rajpurohit⁶, Bethany Brunton⁶, Gabriela Martinez⁶, Carrye Cost⁶, Anna Kalota⁶, Josh Lauring⁶, Nicole L Stone⁶, Shibu Thomas⁶

INTRODUCTION

- Erdafitinib, an oral selective pan-FGFR tyrosine kinase inhibitor, is approved for locally advanced or metastatic urothelial carcinoma in adults with susceptible FGFR3/2 alterations (alt) after progression on platinum-containing chemotherapy¹⁻⁵
- TAR-210 is a novel intravesical drug delivery system designed to provide local, sustained release of erdafitinib within the bladder while limiting systemic toxicities⁶
 - TAR-210 shows promising clinical activity and is well tolerated in *FGFR*-altered non–muscleinvasive bladder cancer (NMIBC) in the first-in-human study (NCT05316155)⁶ (Figure 1)
- To overcome tissue-based challenges in identifying *FGFRalt*, including insufficient sample, sample integrity, and sample extraction from a single tumor,⁷ Janssen Research & Development partnered with Predicine to use a urine cell-free DNA diagnostic test (PredicineCARE[™]) to select patients for treatment with TAR-210
 - Validation of the urine test to detect *FGFRalt* was previously demonstrated using contemporaneous tissue and urine samples⁸
- Reported here are preliminary results of the urine test to detect *FGFRalt* to enable study enrollment, early efficacy data based on urine testing, and the characterization of the urine-defined genomic landscape

FGFR, fibroblast growth factor receptor.

Urothelial Cancer

NAVIGATION

KEY TAKEAWAY

CONCLUSIONS

INTRODUCTION

METHODS

FIGURE 1 First-in-human TAR-210 study design and depiction of TAR-210 in the bladder

RESULTS

FIGURE 2 Molecular screening or eligibility by urine and tissue testing TABLE 1

Type and prevalence of *FGFRalt* identified by urine and tissue were similar

RESULTS (CONT)

FIGURE 3

Urine- and tissue-based testing identifies patients that experience clinical benefit from TAR-210

FIGURE 4

Landscape of pathogenic somatic variants detected in urine from all evaluable samples

Roger Li¹, Ja Hyeon Ku², Antoni Vilaseca Cabo³, Felix Guerrero-Ramos⁴, Joshua Meeks⁵, Neil Beeharry⁶, Michelle Quiroz⁶, Jiarui Zhang⁶, Denis Smirnov⁶, Yashoda Rajpurohit⁶, Bethany Brunton⁶, Gabriela Martinez⁶, Carrye Cost⁶, Anna Kalota⁶, Josh Lauring⁶, Nicole L Stone⁶, Shibu Thomas⁶

METHODS

 First-in-human study enrollment was based on detection of prespecified *FGFRalt* from either tumor tissue obtained from previous biopsies or urine samples obtained prior to enrollment (PredicineCARE[™] next-generation sequencing test) NAVIGATION

KEY TAKEAWAY

CONCLUSIONS

INTRODUCTION

METHODS

FIGURE 1 First-in-human TAR-210 study design and depiction of TAR-210 in the bladder

RESULTS

FIGURE 2 Molecular screening or eligibility by urine and tissue testing TABLE 1 Type and prevalence of *FGFRalt* identified

RESULTS (CONT)

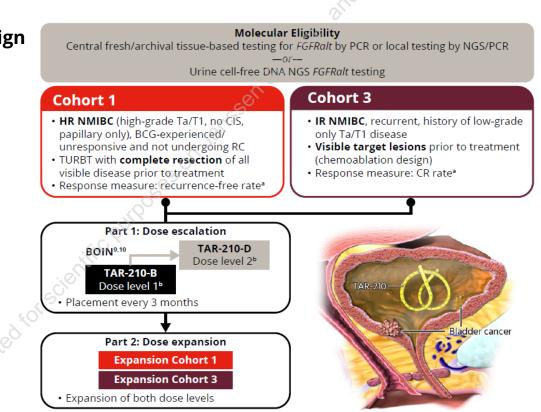
by urine and tissue were similar

FIGURE 3 Urine- and tissue-based testing identifies patients that experience clinical benefit from TAR-210

FIGURE 4 Landscape of pathogenic somatic variants detected in urine from all evaluable samples

APPENDIX

FGFRalt, FGFR alterations.


Urothelial Cancer

Roger Li¹, Ja Hyeon Ku², Antoni Vilaseca Cabo³, Felix Guerrero-Ramos⁴, Joshua Meeks⁵, Neil Beeharry⁶, Michelle Quiroz⁶, Jiarui Zhang⁶, Denis Smirnov⁶, Yashoda Rajpurohit⁶, Bethany Brunton⁶, Gabriela Martinez⁶, Carrye Cost⁶, Anna Kalota⁶, Josh Lauring⁶, Nicole L Stone⁶, Shibu Thomas⁶

METHODS

FIGURE 1: First-in-human TAR-210 study design and depiction of TAR-210 in the bladder

^aResponse is assessed every 3 months with continued treatment for up to 1 year if recurrence-free (Cohort 1) or in CR (Cohort 3). ^b2 different erdafitinib release rates are being evaluated. BCG, bacillus Calmette-Guérin; BOIN, Bayesian optimization interval; CIS, carcinoma in situ; CR, complete response; DNA, deoxyribonucleic acid; HR, high risk; IR, intermediate risk; NGS, nextgeneration sequencing; PCR, polymerase chain reaction; PK, pharmacokinetics; RC, radical cystectomy; TURBT, transurethral resection of bladder tumor.

Urothelial Cancer

Presented by R Li at the 2024 ASCO Genitourinary Cancers Symposium; January 25-27, 2024; San Francisco, CA, USA

KEY TAKEAWAY
CONCLUSIONS
INTRODUCTION
METHODS
FIGURE 1 First-in-human TAR-210 study design and depiction of TAR-210 in the bladder
RESULTS
FIGURE 2 Molecular screening or eligibility by urine and tissue testing
TABLE 1 Type and prevalence of FGFRalt identified by urine and tissue were similar
RESULTS (CONT)

NAVIGATION

FIGURE 3

Urine- and tissue-based testing identifies patients that experience clinical benefit from TAR-210

FIGURE 4 Landscape of pathogenic somatic variants detected in urine from all evaluable samples

Roger Li¹, Ja Hyeon Ku², Antoni Vilaseca Cabo³, Felix Guerrero-Ramos⁴, Joshua Meeks⁵, Neil Beeharry⁶, Michelle Quiroz⁶, Jiarui Zhang⁶, Denis Smirnov⁶, Yashoda Rajpurohit⁶, Bethany Brunton⁶, Gabriela Martinez⁶, Carrye Cost⁶, Anna Kalota⁶, Josh Lauring⁶, Nicole L Stone⁶, Shibu Thomas⁶

RESULTS (1/6)

Screening

- As of Jun 20, 2023, urine test performance was compared to the tissue test from all screened patients with NMIBC (N=178) (Figure 2)
- The proportions of samples that yielded evaluable results were 58% and 60% from urine and tissue, respectively
- *FGFRalt* detection rates in the subsets that yielded positive results were 42% from urine and 62% from tissue
- FGFR3 S249C was the most frequent alt detected in both urine (61%) and tissue (48%) (Table 1)
- For 36% of urine samples in which FGFRalt were detected, there was no corresponding tissue result
- In all instances, the same *FGFRalt* were detected in both urine and tissue

NAVIGATION					
		\langle			

CONCLUSIONS

INTRODUCTION

METHODS

FIGURE 1 First-in-human TAR-210 study design and depiction of TAR-210 in the bladder

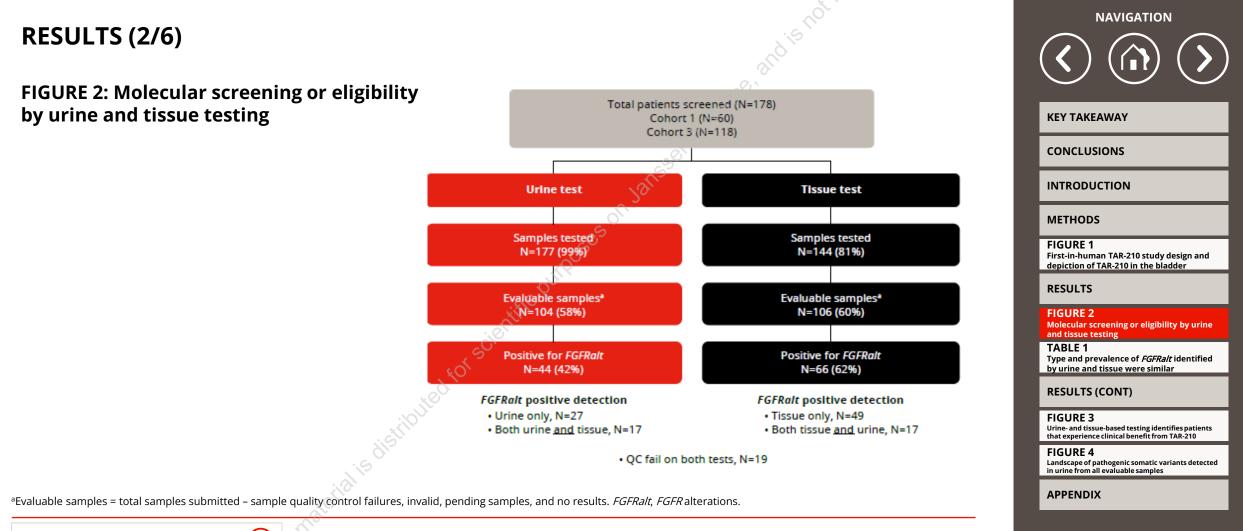
RESULTS

FIGURE 2
Molecular screening or eligibility by urine
and tissue testing
TABLE 1
Type and prevalence of <i>FGFRalt</i> identified
by urine and tissue were similar

RESULTS (CONT)

FIGURE 3
Urine- and tissue-based testing

Urine- and tissue-based testing identifies patients that experience clinical benefit from TAR-210


FIGURE 4 Landscape of pathogenic somatic variants detected in urine from all evaluable samples

APPENDIX

Roger Li¹, Ja Hyeon Ku², Antoni Vilaseca Cabo³, Felix Guerrero-Ramos⁴, Joshua Meeks⁵, Neil Beeharry⁶, Michelle Quiroz⁶, Jiarui Zhang⁶, Denis Smirnov⁶, Yashoda Rajpurohit⁶, Bethany Brunton⁶, Gabriela Martinez⁶, Carrye Cost⁶, Anna Kalota⁶, Josh Lauring⁶, Nicole L Stone⁶, Shibu Thomas⁶

Urothelial Cancer

Roger Li¹, Ja Hyeon Ku², Antoni Vilaseca Cabo³, Felix Guerrero-Ramos⁴, Joshua Meeks⁵, Neil Beeharry⁶, Michelle Quiroz⁶, Jiarui Zhang⁶, Denis Smirnov⁶, Yashoda Rajpurohit⁶, Bethany Brunton⁶, Gabriela Martinez⁶, Carrye Cost⁶, Anna Kalota⁶, Josh Lauring⁶, Nicole L Stone⁶, Shibu Thomas⁶

RESULTS (3/6)

TABLE 1: Type and prevalence of FGFRaltidentified by urine and tissue were similar

	N=178	
<i>FGFRalt</i> type, n (%)	Urine test	Tissue test
Specific FGFR3 mutation	eser of	
S249C	27 (61)	33 (48)
Y373C	14 (32)	25 (36)
R248C	2 (5)	6 (9)
G370C	0	2 (3)
Specific gene fusions	21	
FGFR3:TACC3_V1	1 (2)	3 (4)
atorial		

NAVIGATION **KEY TAKEAWAY** CONCLUSIONS INTRODUCTION METHODS FIGURE 1 First-in-human TAR-210 study design and depiction of TAR-210 in the bladder RESULTS FIGURE 2 Molecular screening or eligibility by urine and tissue testing TABLE 1 Type and prevalence of FGFRalt identified by urine and tissue were similar **RESULTS (CONT)** FIGURE 3 Urine- and tissue-based testing identifies patients that experience clinical benefit from TAR-210 FIGURE 4 Landscape of pathogenic somatic variants detected in urine from all evaluable samples APPENDIX

Urothelial Cancer

FGFRalt, FGFR alterations.

Presented by R Li at the 2024 ASCO Genitourinary Cancers Symposium; January 25-27, 2024; San Francisco, CA, USA

ience and is not

Roger Li¹, Ja Hyeon Ku², Antoni Vilaseca Cabo³, Felix Guerrero-Ramos⁴, Joshua Meeks⁵, Neil Beeharry⁶, Michelle Quiroz⁶, Jiarui Zhang⁶, Denis Smirnov⁶, Yashoda Rajpurohit⁶, Bethany Brunton⁶, Gabriela Martinez⁶, Carrye Cost⁶, Anna Kalota⁶, Josh Lauring⁶, Nicole L Stone⁶, Shibu Thomas⁶

RESULTS (4/6)

Efficacy Based on Urine Testing

- Of the disease-evaluable patients with HR NMIBC (N=11) in Cohort 1 or IR NMIBC (N=15) in Cohort 3, 46% (5/11) and 20% (3/15), respectively, were enrolled based on both urine and tissue testing
- 18% (2/11) of disease-evaluable patients in Cohort 1 and 33% (5/15) in Cohort 3 were enrolled based on urine testing alone due to no sample/insufficient tumor tissue
- In Cohort 1, 82% of patients were recurrence-free at the first disease evaluation, and in Cohort 3, 87% achieved a complete response at the first disease evaluation (Figure 3)
 - All patients (Cohort 1, N=2, and Cohort 3, N=5) enrolled by "urine only" were recurrence free or achieved a complete response
- Urine-based testing reliably captured the spectrum of genomic alt that were similar to those observed in tissue-based genomic landscape assessments of bladder cancer¹¹ (Figure 4)

HR, high risk; IR, intermediate risk; NMIBC, non-muscle-invasive bladder cancer.

Urothelial Cancer

NAVIGATION

KEY TAKEAWAY

CONCLUSIONS

INTRODUCTION

METHODS

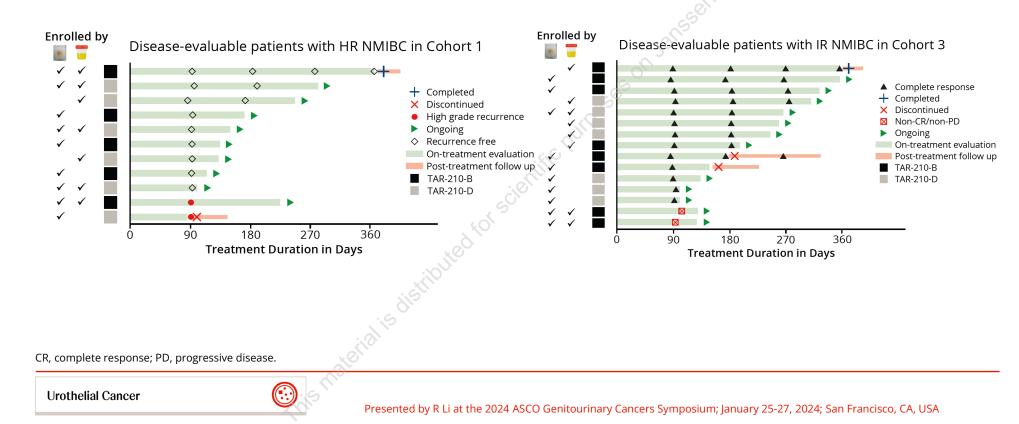
FIGURE 1 First-in-human TAR-210 study design and depiction of TAR-210 in the bladder

RESULTS

FIGURE 2 Molecular screening or eligibility by urine and tissue testing TABLE 1

Type and prevalence of *FGFRalt* identified by urine and tissue were similar

RESULTS (CONT)



Landscape of pathogenic somatic variants detected in urine from all evaluable samples

Roger Li¹, Ja Hyeon Ku², Antoni Vilaseca Cabo³, Felix Guerrero-Ramos⁴, Joshua Meeks⁵, Neil Beeharry⁶, Michelle Quiroz⁶, Jiarui Zhang⁶, Denis Smirnov⁶, Yashoda Rajpurohit⁶, Bethany Brunton⁶, Gabriela Martinez⁶, Carrye Cost⁶, Anna Kalota⁶, Josh Lauring⁶, Nicole L Stone⁶, Shibu Thomas⁶

RESULTS (5/6)

FIGURE 3: Urine- and tissue-based testing identifies patients that experience clinical benefit from TAR-210

 KEY TAKEAWAY

 CONCLUSIONS

 INTRODUCTION

 METHODS

 FIGURE 1

 First-in-human TAR-210 study design and depiction of TAR-210 in the bladder

 RESULTS

NAVIGATION

FIGURE 2 Molecular screening or eligibility by urine and tissue testing TABLE 1 Type and prevalence of *FGFRalt* identified by urine and tissue were similar

RESULTS (CONT)

FIGURE 3

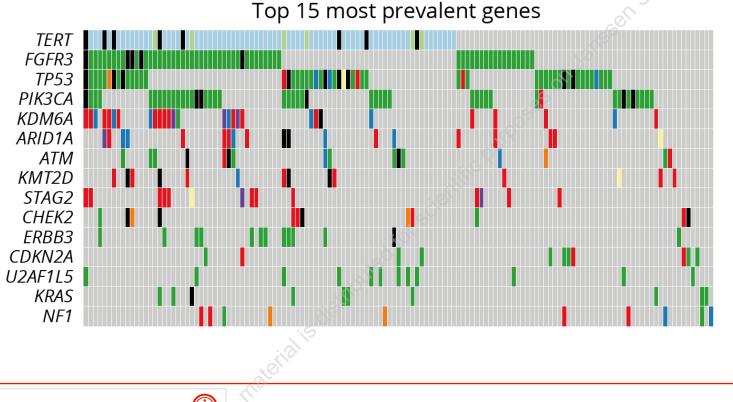

Urine- and tissue-based testing identifies patients that experience clinical benefit from TAR-210

FIGURE 4 Landscape of pathogenic somatic variants detected in urine from all evaluable samples

Roger Li¹, Ja Hyeon Ku², Antoni Vilaseca Cabo³, Felix Guerrero-Ramos⁴, Joshua Meeks⁵, Neil Beeharry⁶, Michelle Quiroz⁶, Jiarui Zhang⁶, Denis Smirnov⁶, Yashoda Rajpurohit⁶, Bethany Brunton⁶, Gabriela Martinez⁶, Carrye Cost⁶, Anna Kalota⁶, Josh Lauring⁶, Nicole L Stone⁶, Shibu Thomas⁶

RESULTS (6/6)

FIGURE 4: Landscape of pathogenic somatic variants detected in urine from all evaluable samples

Missense_Mutation
Nonsense_Mutation
Frame_Shift_Del
5'Flank
Splice_Site
5'UTR
Frame_Shift_Ins
In_Frame_Del
In_Frame_Ins
CNV_Deletion
CNV_Amplification
Multi Hit

KEY TAKEAWAY

CONCLUSIONS

INTRODUCTION

METHODS

FIGURE 1 First-in-human TAR-210 study design and depiction of TAR-210 in the bladder

RESULTS

FIGURE 2 Molecular screening or eligibility by urine and tissue testing TABLE 1

Type and prevalence of *FGFRalt* identified by urine and tissue were similar

RESULTS (CONT)

FIGURE 3

Urine- and tissue-based testing identifies patients that experience clinical benefit from TAR-210

FIGURE 4 Landscape of pathogenic somatic variants detected in urine from all evaluable samples

APPENDIX

Urothelial Cancer

Roger Li1, Ja Hyeon Ku2, Antoni Vilaseca Cabo3, Felix Guerrero-Ramos4, Joshua Meeks5, Neil Beehary6, Michelle Quiroz6, Jiarui Zhang6, Denis Smirnov6, Yashoda Raipurohit6, Bethany Brunton6, Gabriela Martinez6 Carrye Cost⁶, Anna Kalota⁶, Josh Lauring⁶, Nicole L Stone⁶, Shibu Thomas⁶

APPENDIX

REFERENCES:

1. BALVERSA® (erdafitinib) [package insert]. Horsham, PA: Janssen Products, LP; 2023. 2. Perera TPS, et al. Mol Cancer Ther. 2017;16:1010-1020. 3. Loriot Y, et al. N Engl / Med. 2019;381:338-348. 4. Siefker-Radtke AO, et al. Lancet Oncol. 2022;23:248-258. 5. Loriot Y, et al. N Engl / Med. 2023;389:1961-1971. 6. Vilaseca A, et al. Ann Oncol. 2023;34:S1343. 7. Li S, et al. Nat Commun. 2021;12:4172. 8. Kim I, et al. J Clin Oncol. 2023;41:6:565. 9. Liu S, Yuan Y. J R Stat Soc. 2015;64:507-523. 10. Yuan Y, et al. Clin Cancer Res. 2016;22:4291-4301. 11. Zhang R, et al. / Urol. 2021;206:873-884.

DISCLOSURES:

Roger Li has served as a scientific advisor/consultant for BMS, Merck, Ferring, Fergene, Arquer Diagnostics, Urogen Pharma, and Lucenc; has served on the clinical trial protocol committee for CG Oncology; has received research support from Predicine, Veracyte, CG Oncology, and Valar Labs; and has received honoraria from SAI MedPartners and Solstice Health Communications.

ACKNOWLEDGMENTS:

This study was funded by Janssen Research & Development. Erdafi tinib (JNJ-42756493) was discovered in collaboration with Astex Pharmaceuticals. The authors thank Shidong Jia, Il-Jin Kim, and Pan Du of Predicine, Inc. Medical writing assistance was provided by Nicolisha Narainpersad, PhD, of Parexel, and was funded by Janssen Global Services, LLC.

Urothelial Cancer

KEY TAKEAWAY

CONCLUSIONS

INTRODUCTION

METHODS

FIGURE 1 First-in-human TAR-210 study design and depiction of TAR-210 in the bladder

RESULTS

FIGURE 2 Molecular screening or eligibility by urine and tissue testing

TABLE 1 Type and prevalence of FGFRalt identified by urine and tissue were similar

RESULTS (CONT)

FIGURE 3

Urine- and tissue-based testing identifies patients that experience clinical benefit from TAR-210

FIGURE 4 Landscape of pathogenic somatic variants detected in urine from all evaluable samples