<u>Nobuaki Matsubara</u><sup>1</sup>, Takahiro Osawa<sup>2</sup>, Takashige Abe<sup>2</sup>, Mototsugu Oya<sup>3</sup>, Koshiro Nishimoto<sup>4</sup>, Toshiyuki Iwahori<sup>5</sup>, Hiroaki Tsuchiya<sup>5</sup>, Maiko Murota<sup>5</sup>, Masaki Yoshida<sup>5</sup>, Yohei Tatematsu<sup>5</sup>, Yosuke Nakano<sup>5</sup>, Masatoshi Eto<sup>6</sup>, Norio Nonomura<sup>7</sup>

<sup>1</sup>Department of Medical Oncology, National Cancer Center Hospital East, Chiba, Japan; <sup>2</sup>Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan; <sup>3</sup>Department of Urology, Keio University School of Medicine, Tokyo, Japan; <sup>4</sup>International Medical Center, Saitama Medical University, Hidaka, Japan; <sup>5</sup>Janssen Pharmaceutical K.K., Tokyo, Japan; <sup>6</sup>Department of Urology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan; <sup>7</sup>Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan

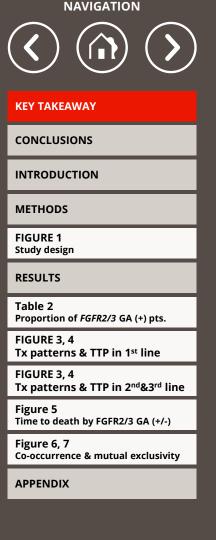
Presented by Nobuaki Matsubara at ASCO Genitourinary Cancers Symposium; January 26, 2024; San Francisco, California, US

https://www.congresshub.com/Oncology/

Click anywhere to view this interactive poster

Copies of this presentation obtained through Quick Response (QR) Codes are for personal use only and may not be reproduced without permission from ASCO® or the author of this presentation.




gu2024/MATSUBARA

Nobuaki Matsubara, Takahiro Osawa, Takashige Abe, Mototsugu Oya, Koshiro Nishimoto, Toshiyuki Iwahori, Hiroaki Tsuchiya, Maiko Murota, Masaki Yoshida, Yohei Tatematsu, Yosuke Nakano, Masatoshi Eto, Norio Nonomura

#### **KEY TAKEAWAYS**



Early detection of FGFR alteration may provide new insights on treatment sequence for patients with a/mUC, especially for those who benefit from FGFR inhibitors.





Nobuaki Matsubara, Takahiro Osawa, Takashige Abe, Mototsugu Oya, Koshiro Nishimoto, Toshiyuki Iwahori, Hiroaki Tsuchiya, Maiko Murota, Masaki Yoshida, Yohei Tatematsu, Yosuke Nakano, Masatoshi Eto, Norio Nonomura

#### CONCLUSIONS

- $\bigcirc$
- The results showed a similar trend compared to prior studies, suggesting the possibility of clinical application in Japan based on previous findings.
- No difference was found in the PFS and the estimated survival rate of FGFR2/3 GA-positive or –negative patients.
- Our data showed that treatment pressure may not alter the FGFR status.

| NAVIGATION                                                                             |
|----------------------------------------------------------------------------------------|
| KEY TAKEAWAY                                                                           |
| CONCLUSIONS                                                                            |
| INTRODUCTION                                                                           |
| METHODS                                                                                |
| FIGURE 1<br>Study design                                                               |
| RESULTS                                                                                |
| Table 2<br>Proportion of <i>FGFR2/3</i> GA (+) pts.                                    |
| FIGURE 3, 4<br>Tx patterns & TTP in 1 <sup>st</sup> line                               |
| FIGURE 3, 4<br>Tx patterns & TTP in 2 <sup>nd</sup> &3 <sup>rd</sup> line              |
| Figure 5                                                                               |
| Time to death by FGFR2/3 GA (+/-)                                                      |
| Time to death by FGFR2/3 GA (+/-)<br>Figure 6, 7<br>Co-occurrence & mutual exclusivity |
| Figure 6, 7                                                                            |



Nobuaki Matsubara, Takahiro Osawa, Takashige Abe, Mototsugu Oya, Koshiro Nishimoto, Toshiyuki Iwahori, Hiroaki Tsuchiya, Maiko Murota, Masaki Yoshida, Yohei Tatematsu, Yosuke Nakano, Masatoshi Eto, Norio Nonomura

#### INTRODUCTION

- Gene alterations (GA) in fibroblast growth factor receptor (FGFR) may be oncogenic drivers in urothelial cancer (UC)
- The association between FGFR GA status and the prognosis with platinum-based chemotherapy is unknown in Asian patients
- This study aims to elucidate the proportion and prognosis of FGFR2 or 3 (2/3) GA-positive advanced or metastatic UC (a/m UC)

| NAVIGATION                                                                |  |  |  |  |
|---------------------------------------------------------------------------|--|--|--|--|
|                                                                           |  |  |  |  |
| KEY TAKEAWAY                                                              |  |  |  |  |
| CONCLUSIONS                                                               |  |  |  |  |
| INTRODUCTION                                                              |  |  |  |  |
| METHODS                                                                   |  |  |  |  |
| FIGURE 1<br>Study design                                                  |  |  |  |  |
| RESULTS                                                                   |  |  |  |  |
| Table 2<br>Proportion of <i>FGFR2/3</i> GA (+) pts.                       |  |  |  |  |
| FIGURE 3, 4<br>Tx patterns & TTP in 1st line                              |  |  |  |  |
| FIGURE 3, 4<br>Tx patterns & TTP in 2 <sup>nd</sup> &3 <sup>rd</sup> line |  |  |  |  |
| Figure 5<br>Time to death by FGFR2/3 GA (+/-)                             |  |  |  |  |
| Figure 6, 7<br>Co-occurrence & mutual exclusivity                         |  |  |  |  |
| APPENDIX                                                                  |  |  |  |  |



Nobuaki Matsubara, Takahiro Osawa, Takashige Abe, Mototsugu Oya, Koshiro Nishimoto, Toshiyuki Iwahori, Hiroaki Tsuchiya, Maiko Murota, Masaki Yoshida, Yohei Tatematsu, Yosuke Nakano, Masatoshi Eto, Norio Nonomura

#### **METHODS**

#### Data source

- MONSTAR SCREEN study1: 1) Genetic screening project by the National Cancer Center of Japan2, 2) Screening of genes over 2,000 advanced solid tumor patients other than Lung cancer, 3) Large volumes of prospective patient-level data on cancer biomarkers, patient clinical characteristics, anticancer treatment history, and longitudinal clinical outcomes
- MONSTAR SCREEN Database (MSDB): FoundationOneLiqid (F1L) was used for detecting 324 cancer-related genes, including FGFR
- Study patients: registered in MSDB

Patient flow

Patients registered in MSDB (Sep. 2019 - Feb. 2022) (N = 2,224)

Other solid tumor (N = 2,082)

Patients with a/m UC

(N = 142)

Under 18 years old or unknown (N = 4)

Patients aged 18 years or older (N = 138)

| KEY TAKEAWAY                                                              |  |  |  |  |
|---------------------------------------------------------------------------|--|--|--|--|
| CONCLUSIONS                                                               |  |  |  |  |
| NTRODUCTION                                                               |  |  |  |  |
| METHODS                                                                   |  |  |  |  |
| FIGURE 1<br>Study design                                                  |  |  |  |  |
| RESULTS                                                                   |  |  |  |  |
| Fable 2     Proportion of FGFR2/3 GA (+) pts.                             |  |  |  |  |
| FIGURE 3, 4<br>Fx patterns & TTP in 1st line                              |  |  |  |  |
| FIGURE 3, 4<br>Fx patterns & TTP in 2 <sup>nd</sup> &3 <sup>rd</sup> line |  |  |  |  |
| Figure 5<br>Fime to death by FGFR2/3 GA (+/-)                             |  |  |  |  |
| Figure 6, 7<br>Co-occurrence & mutual exclusivity                         |  |  |  |  |
| APPENDIX                                                                  |  |  |  |  |
|                                                                           |  |  |  |  |

NAVIGATION

1) Yoshiaki Nakamura et al. Cancer Sci. 2021 Nov 112(11): 4425-4432. 2) Yoichi Fujii et al. Cancer Cell . 2021 Jun 14;39(6):793-809.e8

**Urothelial Cancer** 



Nobuaki Matsubara, Takahiro Osawa, Takashige Abe, Mototsugu Oya, Koshiro Nishimoto, Toshiyuki Iwahori, Hiroaki Tsuchiya, Maiko Murota, Masaki Yoshida, Yohei Tatematsu, Yosuke Nakano, Masatoshi Eto, Norio Nonomura

#### **METHODS**

#### FIGURE 1: Study design

- All patients: patients registered in MSDB between Sep. 2019 and Feb. 2022
- a/m UC patients: all patients with a/m UC and aged 18 years or older
- FGFR2/3 GA definition3: Amino acid variant (FGFR3); R248C, S249C, G370C, Y373C, Fusion variant; FGFR2-BICC1, FGFR2-CASP7, FGFR3-TACC3, FGFR3-BAIAP2L1
- Registration date: the date that the patient was registered in MSDB
- Look-back period: the period from diagnosis of a/m UC to registration
- Follow-up period: the period from the registration date to the subject's death, loss to follow-up, or the end date of the MSDB study, whichever comes first
- First-line treatment date: the initiation date of the patient's first-line treatment
- In the patient population, where the gene test results were used to make a decision, patients with a gene test of "Fail" only were excluded



| KEY TAKEAWAY                                                              |  |  |  |  |
|---------------------------------------------------------------------------|--|--|--|--|
| CONCLUSIONS                                                               |  |  |  |  |
| INTRODUCTION                                                              |  |  |  |  |
| METHODS                                                                   |  |  |  |  |
| FIGURE 1<br>Study design)                                                 |  |  |  |  |
| RESULTS                                                                   |  |  |  |  |
| Table 2<br>Proportion of <i>FGFR2/3</i> GA (+) pts.                       |  |  |  |  |
| FIGURE 3, 4<br>Tx patterns & TTP in 1 <sup>st</sup> line                  |  |  |  |  |
| FIGURE 3, 4<br>Tx patterns & TTP in 2 <sup>nd</sup> &3 <sup>rd</sup> line |  |  |  |  |
| Figure 5<br>Time to death by FGFR2/3 GA (+/-)                             |  |  |  |  |
| Figure 6, 7<br>Co-occurrence & mutual exclusivity                         |  |  |  |  |
| APPENDIX                                                                  |  |  |  |  |
|                                                                           |  |  |  |  |

Nobuaki Matsubara, Takahiro Osawa, Takashige Abe, Mototsugu Oya, Koshiro Nishimoto, Toshiyuki Iwahori, Hiroaki Tsuchiya, Maiko Murota, Masaki Yoshida, Yohei Tatematsu, Yosuke Nakano, Masatoshi Eto, Norio Nonomura

#### RESULTS

### Table1: Patient characteristics in *FGFR2/3* GA

|                                 |                | Total<br>n (%)                    | Positive<br>n (%) | Negative<br>n (%) | Prim  |
|---------------------------------|----------------|-----------------------------------|-------------------|-------------------|-------|
|                                 |                | N = 138                           | N = 16*           | N = 119*          | tum   |
| Sex                             | Male/Female    | 95/43                             | 11/5              | 82/37             |       |
| Age (years)                     | Median [range] | 72.070.072.0[42-90][50-86][42-90] |                   | 72.0<br>[42-90]   | TNM   |
|                                 | 18–64          | 30 (21.7)                         | 3 (18.8)          | 25 (21.0)         |       |
| Age Category                    | 65–74          | 56 (40.6)                         | 8 (50.0)          | 47 (39.5)         | TNM   |
|                                 | 75 or more     | 52 (37.7)                         | 5 (31.3)          | 47 (39.5)         |       |
| Smoking<br>status/history       | Yes            | 75 (54.3)                         | 7 (43.8)          | 67 (56.3)         | No.   |
|                                 | No/Unknown     | 63 (45.7)                         | 9 (56.3)          | 52 (43.7)         | prio  |
|                                 | 0–1            | 90 (65.2)                         | 9 (56.3)          | 79 (66.4)         | _     |
| ECOG PS                         | 2–3            | 10 (7.2)                          | 2 (12.5)          | 8 (6.7)           | Gene  |
|                                 | Unknown        | 38 (27.5)                         | 5 (31.3)          | 32 (26.9)         |       |
| Primary tumor<br>histopathology | Pure UC        | 102 (73.9)                        | 13 (81.3)         | 88 (73.9)         | F1L ( |
|                                 | Non-Pure UC    | 12 (8.7)                          | 2 (12.5)          | 10 (8.4)          | FILV  |

|                |                                                                                                                                            | Positive<br>n (%)                                                                                                                                                                                                | Negative<br>n (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| nce            | N = 138                                                                                                                                    | N = 16*                                                                                                                                                                                                          | N = 119*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Bladder        | 70 (50.7)                                                                                                                                  | 8 (50.0)                                                                                                                                                                                                         | 62 (52.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Upper tract UC | 68 (49.3)                                                                                                                                  | 8 (50.0)                                                                                                                                                                                                         | 57 (47.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| NO             | 69 (50.0)                                                                                                                                  | 8 (50.0)                                                                                                                                                                                                         | 59 (49.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| N1-N3, NX      | 67 (48.6)                                                                                                                                  | 8 (50.0)                                                                                                                                                                                                         | 58 (48.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Unknown        | 2 (1.4)                                                                                                                                    | 0 (0.0)                                                                                                                                                                                                          | 2 (1.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| M0             | 96 (69.6)                                                                                                                                  | 11 (68.8)                                                                                                                                                                                                        | 83 (69.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| M1             | 40 (29.0)                                                                                                                                  | 5 (31.3)                                                                                                                                                                                                         | 34 (28.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Unknown        | 2 (1.4)                                                                                                                                    | 0 (0.0)                                                                                                                                                                                                          | 2 (1.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| SACT (+)       | 22 (15.9)                                                                                                                                  | 2 (12.5)                                                                                                                                                                                                         | 20 (16.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| SACT (-)       | 52 (37.7)                                                                                                                                  | 6 (37.5)                                                                                                                                                                                                         | 44 (37.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| F1L CDx        | 135 (97.8)                                                                                                                                 | 16 (100.0)                                                                                                                                                                                                       | 119 (100.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| F1 CDx         | 31 (22.5)                                                                                                                                  | 5 (31.3)                                                                                                                                                                                                         | 26 (21.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Other          | 68 (49.3)                                                                                                                                  | 9 (56.3)                                                                                                                                                                                                         | 59 (49.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 1              | 84 (60.9)                                                                                                                                  | 10 (62.5)                                                                                                                                                                                                        | 74 (62.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 2 or more      | 51 (37.0)                                                                                                                                  | 6 (37.5)                                                                                                                                                                                                         | 45 (37.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                | Upper tract UC     N0     N1-N3, NX     Unknown     M0     M1     Unknown     SACT (+)     SACT (-)     F1L CDx     F1 CDx     Other     1 | Bladder70 (50.7)Upper tract UC68 (49.3)N069 (50.0)N1-N3, NX67 (48.6)Unknown2 (1.4)M096 (69.6)M140 (29.0)Unknown2 (1.4)SACT (+)22 (15.9)SACT (-)52 (37.7)F1L CDx135 (97.8)F1 CDx31 (22.5)Other68 (49.3)184 (60.9) | N (%)     n (%)       N = 138     N = 16*       Bladder     70 (50.7)     8 (50.0)       Upper tract UC     68 (49.3)     8 (50.0)       N0     69 (50.0)     8 (50.0)       N1-N3, NX     67 (48.6)     8 (50.0)       Unknown     2 (1.4)     0 (0.0)       M0     96 (69.6)     11 (68.8)       M1     40 (29.0)     5 (31.3)       Unknown     2 (1.4)     0 (0.0)       SACT (+)     22 (15.9)     2 (12.5)       SACT (-)     52 (37.7)     6 (37.5)       F1L CDx     135 (97.8)     16 (100.0)       F1 CDx     31 (22.5)     5 (31.3)       Other     68 (49.3)     9 (56.3)       1     84 (60.9)     10 (62.5) |  |

| $\bigcirc$ $\bigcirc$ $\bigcirc$                                          |
|---------------------------------------------------------------------------|
| KEY TAKEAWAY                                                              |
| CONCLUSIONS                                                               |
| NTRODUCTION                                                               |
| METHODS                                                                   |
| FIGURE 1<br>Study design                                                  |
| RESULTS                                                                   |
| Fable 2     Proportion of FGFR2/3 GA (+) pts.                             |
| FIGURE 3, 4<br>Fx patterns & TTP in 1st line                              |
| FIGURE 3, 4<br>Fx patterns & TTP in 2 <sup>nd</sup> &3 <sup>rd</sup> line |
| igure 5<br>ime to death by FGFR2/3 GA (+/-)                               |
| igure 6, 7<br>To-occurrence & mutual exclusivity                          |
|                                                                           |

APPENDIX

ECOG PS; Eastern cooperative oncology group performance status,

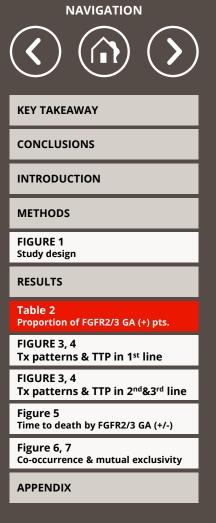
F1; FoundationOne, SACT; systemic anti-cancer therapy TNM; Tumor, node and metastasis \*Total of Positive/Negative: 3 patients of "Fail" in F1L were excluded TNM staging; test results as of the First-line treatment date

**Urothelial Cancer** 



Nobuaki Matsubara, Takahiro Osawa, Takashige Abe, Mototsugu Oya, Koshiro Nishimoto, Toshiyuki Iwahori, Hiroaki Tsuchiya, Maiko Murota, Masaki Yoshida, Yohei Tatematsu, Yosuke Nakano, Masatoshi Eto, Norio Nonomura

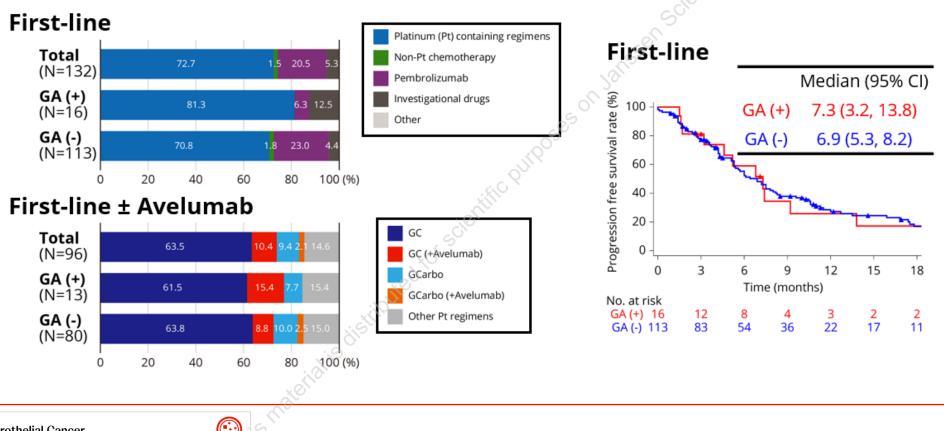
#### RESULTS


#### Table 2: Proportion of *FGFR2/3* GA (+) pts.

|                  |                                                                   |                       | 10 m                                                                                   |
|------------------|-------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------|
|                  |                                                                   | n (N = 135)           | % (95%CI)                                                                              |
| FGFR2/3 GA (+)   |                                                                   | 16                    | 11.9<br>(6.9, 18.5)                                                                    |
| Gene<br>Mutation | AA variant                                                        | چې                    | 20                                                                                     |
| FGFR3            | R248C<br>S249C<br>G370C<br>Y373C<br>R248C &<br>S249C <sup>†</sup> | 2<br>6<br>0<br>4<br>1 | 1.5 (0.2, 5.2)<br>4.4 (1.6, 9.4)<br>0.0 (0.0, 2.7)<br>3.0 (0.8, 7.4)<br>0.7 (0.0, 4.1) |
| Fusion Gene      | Fusion ID                                                         |                       |                                                                                        |
| FGFR3            | FGFR3-<br>TACC3                                                   | 5                     | 3.7 (1.2, 8.4)                                                                         |

AA; Amino acid, pts; patients: <sup>†</sup>Cases with two variants FGFR2 was not detected

**Urothelial Cancer** 

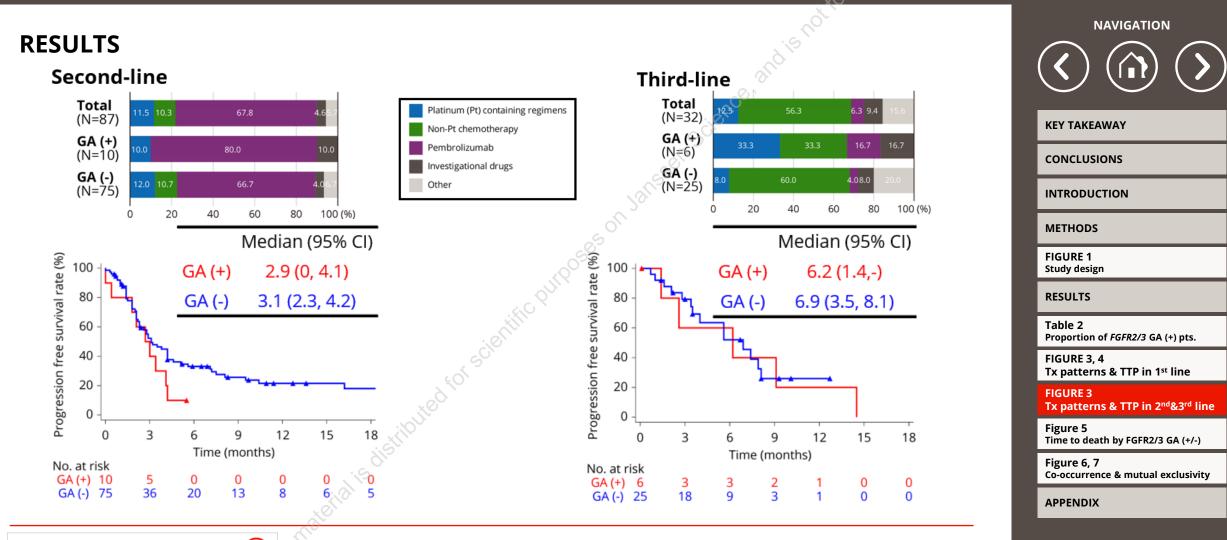





Nobuaki Matsubara, Takahiro Osawa, Takashige Abe, Mototsugu Oya, Koshiro Nishimoto, Toshiyuki Iwahori, Hiroaki Tsuchiya, Maiko Murota, Masaki Yoshida, Yohei Tatematsu, Yosuke Nakano, Masatoshi Eto, Norio Nonomura

#### RESULTS

FIGURE 3, 4: Treatment patterns & Time to progression by each line of therapy in FGFR2/3 GA

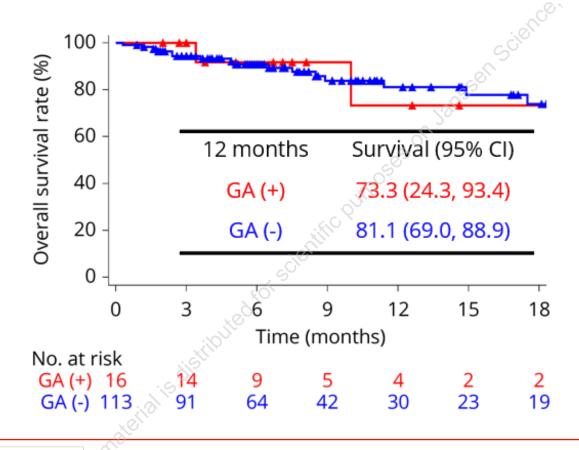



| KEY TAKEAWAY                                                              |
|---------------------------------------------------------------------------|
| CONCLUSIONS                                                               |
| INTRODUCTION                                                              |
| METHODS                                                                   |
| FIGURE 1<br>Study design                                                  |
| RESULTS                                                                   |
| Table 2<br>Proportion of <i>FGFR2/3</i> GA (+) pts.                       |
| FIGURE 3, 4<br>Tx patterns & TTP in 1st line                              |
| FIGURE 3, 4<br>Tx patterns & TTP in 2 <sup>nd</sup> &3 <sup>rd</sup> line |
| Figure 5<br>Time to death by FGFR2/3 GA (+/-)                             |
| Figure 6, 7<br>Co-occurrence & mutual exclusivity                         |
| APPENDIX                                                                  |

NAVIGATION



Nobuaki Matsubara, Takahiro Osawa, Takahige Abe, Mototsugu Oya, Koshiro Nishimoto, Toshiyuki Iwahori, Hiroaki Tsuchiya, Maiko Murota, Masaki Yoshida, Yohei Tatematsu, Yosuke Nakano, Masatoshi Eto, Norio Nonomura




Urothelial Cancer

Nobuaki Matsubara, Takahiro Osawa, Takashige Abe, Mototsugu Oya, Koshiro Nishimoto, Toshiyuki Iwahori, Hiroaki Tsuchiya, Maiko Murota, Masaki Yoshida, Yohei Tatematsu, Yosuke Nakano, Masatoshi Eto, Norio Nonomura

#### RESULTS

Figure 5: Time to death (OS) of UC by first-line treatment and subgroups



NAVIGATION **KEY TAKEAWAY** CONCLUSIONS INTRODUCTION **METHODS** FIGURE 1 Study design RESULTS Table 2 Proportion of FGFR2/3 GA (+) pts. FIGURE 3, 4 Tx patterns & TTP in 1<sup>st</sup> line FIGURE 3.4 Tx patterns & TTP in 2<sup>nd</sup>&3<sup>rd</sup> line Figure 5 Time to death by FGFR2/3 GA (+/-) Figure 6, 7 Co-occurrence & mutual exclusivity APPENDIX



Nobuaki Matsubara, Takahiro Osawa, Takashige Abe, Mototsugu Oya, Koshiro Nishimoto, Toshiyuki Iwahori, Hiroaki Tsuchiya, Maiko Murota, Masaki Yoshida, Yohei Tatematsu, Yosuke Nakano, Masatoshi Eto, Norio Nonomura

#### RESULTS

Figure 6: Co-occurrence and mutual exclusivity plot for FGFR and other typical GA

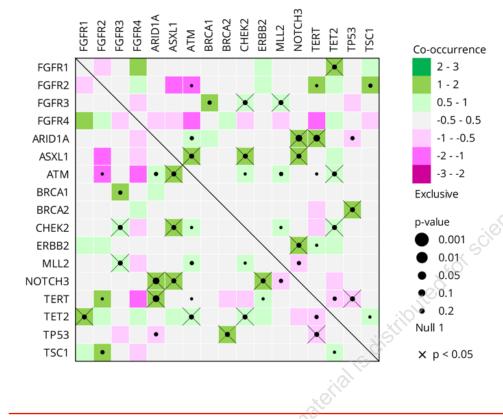
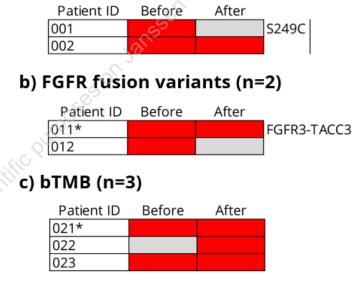
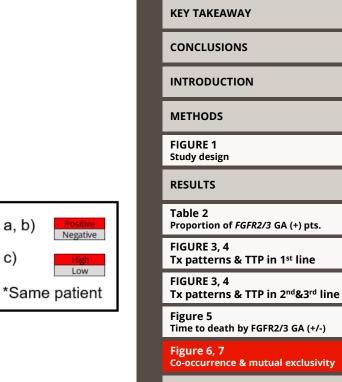





Figure 7: Sample-level concordance of gene mutation status; Before vs. after treatment







a, b)

C)

NAVIGATION

APPENDIX

**Urothelial Cancer** 



Nobuaki Matsubara, Takahiro Osawa, Takashige Abe, Mototsugu Oya, Koshiro Nishimoto, Toshiyuki Iwahori, Hiroaki Tsuchiya, Maiko Murota, Masaki Yoshida, Yohei Tatematsu, Yosuke Nakano, Masatoshi Eto, Norio Nonomura

#### **APPENDIX**

#### **REFERENCES:**

Yoshiaki Nakamura et al. Cancer Sci. 2021 Nov 112(11): 4425-4432.
Yoichi Fujii et al. Cancer Cell . 2021 Jun 14;39(6):793-809.e8.
Yohann Loriot et al. N Engl J Med. 2019 Jul 25;381(4): 338-349.

#### **DISCLOSURES:**

This study was conducted and founded by Janssen Pharmaceutical K.K., Japan. Janssen Pharmaceutical K.K. was one of the participating companies in the MONSTAR SCREEN database study. Nobuaki Matsubara has received consulting or advisory roles from Sanofi, Janssen, AstraZeneca, Lilly, Amgen, Seagen, Pfizer, honoraria from Sanofi, and research funding from Janssen, MSD, Bayer Yakuhin, Chugai Pharma, AstraZeneca, Astellas Pharma, Bayer, Amgen, Takeda, Lilly, Eisai, Roche/Genentech, Seagen, Novartis, and Abbvie. Takahiro Osawa has received honoraria from Takeda and Ono Pharma. Mototsugu Oya has received consulting or advisory roles from Bayer, and honoraria from Pfizer, Bayer, Ono Pharma, Bristol-Myers Squibb Japan, Astellas Pharma, Janssen, AstraZeneca, Takeda, MSD, Eisai, Merck, and research funding from Astellas Pharma. Toshiyuki Iwahori has received honoraria from Shiga University of medical science. Toshiyuki Iwahori, Hiroaki Tsuchiya, Maiko Murota, Masaki Yoshida, Yohei Tatematsu, and Yosuke Nakano are employees of Janssen. Masatoshi Eto has received consulting or advisory roles from Eisai, Pfizer, Takeda, MSD, Chugai Pharma, and speakers' bureau from MSD, Merck, AstraZeneca, Eisai, Ono Pharma, Takeda, Bristol-Myers Squibb, Astellas Pharma, Pfizer, Janssen, and research funding from Takeda. Norio Nonomura has received honoraria from Janssen, Takeda, Astellas Pharma, and patents, royalties, and other intellectual property from Shionogi. Takashige Abe and Koshiro Nishimoto have no conflict of interest to declare.

#### **ACKNOWLEDGMENTS:**

The authors would like to thank all of the patients and their families who participated in the MSDB study, to all medical personnel and institutions that cooperated in the study, and the National Cancer Center Hospital East for research management and data center support. In addition, the authors would like to thank Jason Hwang of Janssen Pharmaceutical K.K., and Ryo Yano of Janssen Pharmaceutical K.K. and CMIC Inizio Co., Ltd., and Yoshinori Imokawa and Shigeki Omori of A2 Healthcare Co., Ltd. for their support of this study.

**Urothelial Cancer** 



**KEY TAKEAWAY** CONCLUSIONS INTRODUCTION **METHODS** FIGURE 1 Study design RESULTS Table 2 Proportion of FGFR2/3 GA (+) pts. FIGURE 3, 4 Tx patterns & TTP in 1<sup>st</sup> line FIGURE 3, 4 Tx patterns & TTP in 2<sup>nd</sup>&3<sup>rd</sup> line Figure 5 Time to death by FGFR2/3 GA (+/-) Figure 6, 7 Co-occurrence & mutual exclusivity **APPENDIX** 

NAVIGATION