Urine-Based Molecular Testing Identifies *FGFR* **Alteration–Positive Patients for Treatment** With TAR-210

Felix Guerrero-Ramos¹, Ja Hyeon Ku², Antoni Vilaseca Cabo³, Carles Raventós⁴, Neal Shore⁵, Josh Meeks⁶, Roger Li⁷, Siamak Daneshmand⁸, Gautam Jayram⁹, Taek Won Kang¹⁰, Neil Beeharry¹¹, Jiarui Zhang¹¹, David Weingeist¹¹, Denis Smirnov¹¹ Bethany Brunton¹¹, Carrye Cost¹¹, Anna Kalota¹¹, Josh Lauring¹¹, Nicole Stone¹¹, Shibu Thomas¹¹

pital Universitario 12 de Octubre, Madrid, Spain; "Department of Urology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Kores; "Hospital Clinic arceiona, Barceiona, Spain; "Department of Urology, Vial Hebron University Hospital, Barceiona, Spain; "Carolina Urologic, Research Center, Myrtle Beach, SC, USA; "Department of Urology, Neestmu University, Finiberg School of Medicine, Origo, Li USA; "Department of Geneticination of Urology, Vial Hebron, Dispartment of Urology, Vial Hebron, Li USA; "Department of Broingy, Neestmu University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA; "Urology Associates, Nashville, TN, USA; "Department of Urology, Chonnam National University Hospital, Managiu, Korea; "Hussen Research & Development, Spring House, PA, USA

Key Takeaway

Patients with FGFR-altered NMIBC were successfully identified using urine testing during recruitment in the first-in-human clinical study of TAR-210, a novel erdafitinib intravesical system that provides locally sustained release of erdafitinib in the bladder

Conclusions

Urine testing for *FGFR*alt allowed identification of additional patients with NMIBC. This is particularly valuable when a result could not be obtained from the tissue sample submitted in parallel

(i)

(i)

Rates of *FGFR*alts, overall and specific type of alt, identified in urine were generally comparable with those of *FGFR*alts identified in tissue

All patients identified through urine samples were recurrence free (HR NMIBC) or achieved a complete response (IR NMIBC) at the data cutoff

These findings support the use of urine testing during patient selection in the recently initiated phase 3 study (MoonRISe-1, NCT06319820)

https://www.congresshub.com/Oncology/ESMO2024/ErdaRIS/Ramos Copies of this poster obtained through QR (Quick Response) and/or tex key codes are for personal use only and may not be reproduced without

written permission of the authors.

Introduction

- Between 50% and 80% of patients with non-muscle-invasive bladder cancer (NMIBC) have alterations in fibroblast growth factor receptor (FGFR) genes that may be oncogenic drivers in bladder cancer¹⁻³
- Erdafitinib is a selective pan-FGFR tyrosine kinase inhibitor⁴ approved for the treatment of patients with locally advanced or metastatic urothelial cancer with susceptible FGFR alterations (FGFRalt) after ≥1 prior systemic treatment⁵
- TAR-210 is a novel erdafitinib intravesical releasing system that provides local, sustained delivery of erdafitinib within the bladder⁶
- TAR-210 is being evaluated in a first-in-human clinical study (NCT05316155) in patients with early-stage bladder cancer whose tumors harbor select FGFRalts⁶ (Figure 1)

Results

Detection of FGFRalts in Tissue and Urine During Screening

- Overall, the *FGFR*alt+ rate and frequency of type of alteration identified by urine were generally comparable with those identified in tissue (Table 1)
- In Cohort 1, 36.5% of tissue and 32.3% of urine samples yielded an FGFRalt+ result
- In Cohort 3, 71.8% of tissue and 55.1% of urine samples yielded an FGFRalt+ result
- The most prevalent FGFRalt detected across both cohorts and sample types was FGFR3 S249C

Table 1: FGFRalts detected by tissue and urine testing in screened patients in Cohort 1 and Cohort 3

Patients With <i>FGFR</i> alts, n (%)	Cohort 1 HR NMIBC		Cohort 3 IR NMIBC	
Number of samples that yielded an <i>FGFR</i> alt test result	Tissue (n=63)	Urine (n=65)	Tissue (n=103)	Urine (n=89)
FGFRalt+ (within samples that yielded a result), n (%)	23 (36.5)	21 (32.3)	74 (71.8)	49 (55.1)
Number of samples with single FGFRalts detected	n=23	n=19	n=69	n=46
Single FGFRalts detected, n (%)			ρ	
FGFR3 S249C	17 (73.9)	12 (57.1)	33 (44.6)	25 (51.0)
FGFR3 R248C	2 (8.7)	0	8 (10.8)	5 (10.2)
FGFR3 Y373C	2 (8.7)	5 (23.8)	24 (32.4)	13 (26.5)
FGFR3 G370C	0	0	3 (4.1)	0
FGFR3 S371C	0	1 (4.8)	0	1 (2.0)
FGFR3-TACC3 (fusion)	2 (8.7)	1 (4.8)	1 (1.4)	2 (4.1)
Number of samples with multiple <i>FGFR</i> alts detected	n=0	n=2	n=5	n=3
Multiple FGFRalts detected, n (%)				
S249C & Y373C	0	1 (4.8)	2 (2.7)	0
R248C & Y373C	0	0	1 (1.4)	0
\$249C & G370C	0	0	1 (1.4)	0
R248C & S249C & Y373C	0	0	1 (1.4)	0
S249C & R248C	0	0	0	1 (2.0)
S249C & M528I	0	0	0	1 (2.0)
S249C & S371C	0	0	0	1 (2.0)
S249C & L324V	0	1 (4.8)	0	0

- Effective identification of NMIBC with select FGFRalts may be hindered by limited tumor material for tissue-based tests
- To overcome this challenge, a urine-based assay was implemented alongside the molecular screening strategy for tissue samples
- Here we report early results of FGFRalt detection via the urine assay for patient selection

Methods

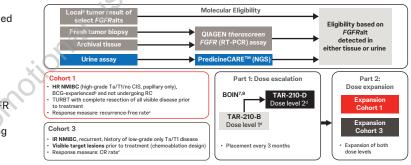
- Bladder tumor samples were tested via QIAGEN therascreen® FGFR reverse transcription polymerase chain reaction (RT-PCR) assay and urine samples via PredicineCARE[™] next-generation sequencing (NGS) assay (152 gene panel including FGFR1-4)
- Detection of select FGFRalts by either test was sufficient for molecular eligibility

Baseline Characteristics of Enrolled Patients

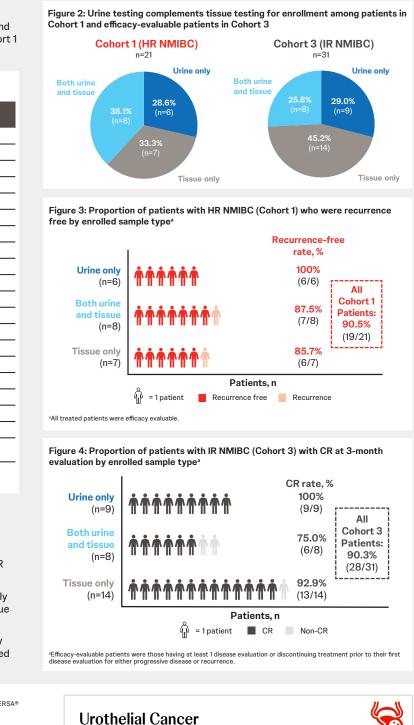
• At the March 22, 2024, data cutoff, 21 patients with HR NMIBC and 43 patients with IR NMIBC had been treated with TAR-210 in Cohort 1 and Cohort 3, respectively (Table 2)

Table 2: Baseline demographic and disease characteristics of patients in Cohort 1 and Cohort 3

Characteristic, n (%)ª	Cohort 1 HR NMIBC (N=21)	Cohort 3 IR NMIBC (N=43)	
Age, median (range), y	73.0 (62-90)	67.0 (41-89)	
Sex, male	15 (71.4)	34 (79.1)	
Race			
White	17 (81.0)	26 (60.5)	
Asian	4 (19.0)	17 (39.5)	
Tumor grade			
N	21	42	
High grade	21 (100)	0	
Low grade	0	42 (100)	
ECOG PS			
0	13 (61.9)	34 (79.1)	
1	5 (23.8)	6 (14.0)	
2	3 (14.3)	3 (7.0)	
Tumor stage at baseline ^b			
Та	16 (76.2)	40 (95.2)	
T1	5 (23.8)	2 (4.8)	
Multiple tumors ^b	9 (42.9)	18 (42.8)	
Prior BCG	21 (100.0)	9 (20.9)	
Prior intravesical therapy	2 (9.5)	22 (51.2)	
Prior TURBT and tumor ablative procedures, median (range)	4 (1-12)	2 (1-14)	


ECOG PS, Eastern Cooperative Oncology Group performance status ; TURBT, transurethral resection of bladder tumor. ^aUnless otherwise stated. ^bCohort 3 n=42; data were unavailable for 1 patient at the clinical cutoff.

Efficacy of TAR-210 by Enrolled Sample Type


- As of March 22, 2024, a total of 21 patients with HR NMIBC and 31 with IR NMIBC were efficacy evaluable
- Among those enrolled, 28.6% with HR NMIBC and 29.0% with IR NMIBC were enrolled based on urine samples only (Figure 2)
- All 6 patients (100%) with HR NMIBC enrolled by urine samples only were recurrence free at data cutoff; 85.7% enrolled based on tissue samples only were recurrence free (Figure 3)
- All 9 patients (100%) with IR NMIBC enrolled by urine samples only had a CR at the first disease evaluation at 3 months; 92.9% enrolled based on tissue samples had CR (Figure 4)

1 Hernández S et al. / Clin Oncol 2008;24:3664-3671 2 Knowles MA Hurst CD. Nat Rev Cancer 2015;15:25-41 3 Khalid S et al. Fur Urol Open Sci 2020;21:61-68 4 Perera TPS et al. Mol Cancer Ther. 2017;16:1010-1020 5 RAI VERSA® ioni, Horsham, PA: Janssen Products, LP: 2024. 6. Vilaseca A. et al. Ann Oncol. 2023;34:S1343. 7. Liu S. Yuan Y. J R Start Soc. 2015;64:507-523. 8. Yuan Y. et al. Clin Cancer Res. 2016;22:4291-430

Figure 1: First-in-human TAR-210 study design

BCG, bacillus Calmette-Guérin; BOIN, Bayesian optimization interval; CIS, carcinoma in situ; CLIA, Clinical Laboratory Improvement Amendments; CR, complete response; HR, high risk; IR, intermediate risk; RC; radical cystectomy. «Local tumor result of confirmed FGFRAIE by CLIA-certified test. "BCC de Superienced is defined as 5 of 6 induction doses with or without maintenance or intolerant of BCG. "Response is assessed every 3 months with continued treatment for up to 1 year if recurrence free (Cohort 1) or in CR (Cohort 3)."² different erdafithin Pelaesa rates are being evaluated.

