TAR-200 Plus Cetrelimab or Cetrelimab Alone as Neoadjuvant Therapy in Patients With Muscle-Invasive Bladder Cancer Who Are Ineligible for or Refuse Neoadjuvant Cisplatin-Based Chemotherapy: Interim Analysis of SunRISe-4

Andrea Necchi¹, Felix Guerrero-Ramos², Paul L Crispen³, Bernardo Herrera-Imbroda⁴, Rohan Garje⁵, Thomas Powles⁶, Charles C Peyton⁷, Benjamin Pradere⁸, Ja Hyeon Ku⁹, Neal Shore¹⁰, Martin Bögemann¹¹, Mark A Preston¹², Evanguelos Xylinas¹³, Saltanat Najmi¹⁴, Mohamad Hasan¹⁴, Hind Stitou¹⁵, Sumeet Bhanvadia¹⁴, Hussein Sweiti¹⁴, Sarah P Psutka¹⁶

¹IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy; ²University Hospital 12 de Octubre, Madrid, Spain; ³Department of Urology, University of Florida, Gainesville, FL, USA; ⁴Urology Department, Hospital Universitario Virgen de la Victoria, Málaga, Spain; ⁵Miami Cancer Institute, Miami, FL, USA; ⁶Barts Cancer Centre, London, UK; The Royal Free London NHS Foundation Trust, London, UK; ¹Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA; ⁶Barts Cancer Centre, London, UK; The Royal Free London NHS Foundation Trust, London, UK; ¹Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA; ⁶Barts Cancer Centre, London, UK; The Royal Free London NHS Foundation Trust, London, UK; ¹Department of Urology, Birmingham, Birmingham, AL, USA; ⁶Barts Cancer Centre, Myrtle Beach, SC, USA; ¹¹Department of Urology, Münster University Hospital, Münster, Germany; ¹²Department of Urologic Surgery, Brigham & Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; ¹³Department of Urology, Bichat-Claude Bernard Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris Cité, Paris, France; ¹⁴Janssen Research & Development, Spring House, PA, USA; ¹⁵Janssen Cilag, Issy-les-Moulineaux, France; ¹⁶University of Washington, Fred Hutchinson Cancer Center, Seattle, WA, USA

https://www.congresshub.com/Oncology ESMO2024/TAR-200/Necch

Copies of this presentation obtained through QR
(Quick Response) and/or text key codes are for
personal use only and may not be reproduced
without written permission
of the authors.

Disclosures

A Necchi has received grants/research funding (institutional) from AstraZeneca, Bristol Myers Squibb, Gilead, Ipsen, and Merck; has received consulting/advisory fees from Astellas, AstraZeneca, Bristol Myers Squibb, Catalym, Gilead, Johnson & Johnson, Samsung Bioepis, Bicycle Therapeutics, and Merck; serves in a leadership role for the Global Society of Rare Genitourinary Tumors (GSRGT); and serves as Associate Editor for the Journal of Clinical Oncology (JCO)

Unmet Need in Patients With MIBC

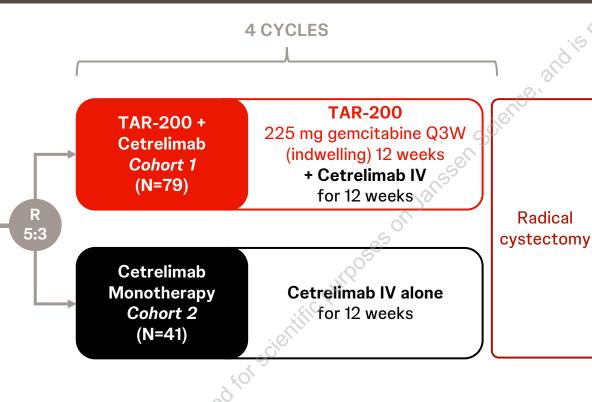
- Standard of care for MIBC (T2-T4a NOMO) includes RC with or without NAC¹
 - However, up to 50% of patients with MIBC are ineligible for NAC^{2,3}
 - Approximately 50% of patients experience recurrence within 2 years after undergoing RC, and 5-year survival after RC is ~50%⁴⁻⁶
- In patients with MIBC undergoing RC, pathologic stage is a prognostic factor for survival⁵⁻⁸
 - pCR rates with RC alone, with NAC, and with neoadjuvant checkpoint inhibitors are 10-15%, ~30%, and 31-39%, respectively⁷⁻¹³
 - pCR in patients who have received neoadjuvant chemotherapy therapy is associated with a 55% lower risk of death and an 81% lower risk of recurrence compared with patients with residual disease⁸
- There is a high unmet need for effective and more tolerable treatment options for patients with MIBC who are candidates for RC but not candidates for or who refuse NAC

TAR-200 Is a Gemcitabine Intravesical Releasing System Designed to Provide Sustained Gemcitabine Within the Bladder

- Phase 1 studies show clinical activity for TAR-200 in patients with MIBC^{1,2}
- Cetrelimab is an anti–PD-1 agent^{3,4}
- SunRISe-4 (NCT04919512) is an ongoing randomized phase 2 study assessing the efficacy and safety of neoadjuvant TAR-200 + cetrelimab or cetrelimab monotherapy in patients with MIBC scheduled for RC who are ineligible for or refuse NAC

TAR-200 is placed using a urinary placement catheter in a 2- to 3-minute office procedure

SunRISe-4: Phase 2b Study of Neoadjuvant TAR-200 + Cetrelimab in Patients With MIBC (cT2-T4a NOM0)


Population:

- · Aged ≥18 years
- Histologically confirmed cT2-T4a NOMO MIBC (absence of nodal or metastatic disease at screening)
- Predominant UC histology
- ECOG PS of 0-1
- Ineligible or refusing NAC
- · Scheduled for RC

Stratification:

- Visible residual disease at TURBT: complete vs incomplete (≤3 cm)
- Tumor stage at MIBC diagnosis: cT2 vs cT3-4a

NCT04919512

Follow-up Weeks 4-108

- Every 4 weeks until Week 12 post RC
- Every 12 weeks until Week 108 post RC (end of study)

Primary end point

Pathologic CR rate (ypTONO)

Secondary end points

- · Recurrence-free survival
- Safety

Exploratory end points

- Pathologic OR rate (≤ypT1N0)
- Overall survival
- Time to symptomatic progression
- Quality of life according to FACT-BI
- Pharmacokinetics
- · Biomarker analysis

- Sample size: N=160
- For this interim analysis, the clinical data cutoff was May 31, 2024

Statistical Plan

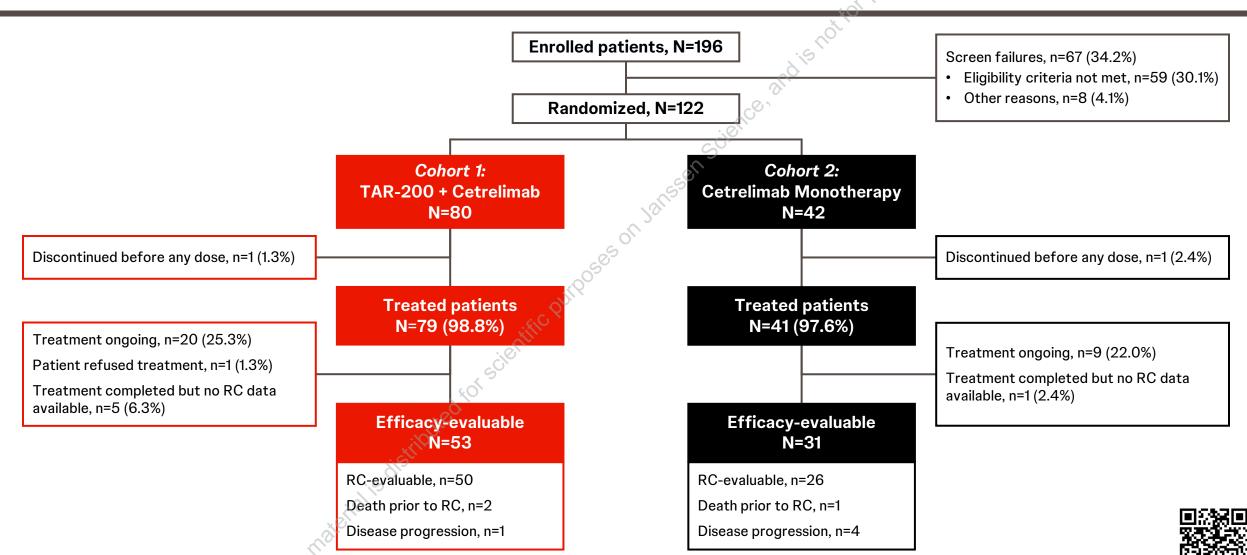
Objectives

To determine the antitumor effects of TAR-200 + IV cetrelimab and IV cetrelimab alone and to demonstrate the *contribution of components* of TAR-200 and cetrelimab

Hypothesis

A *side-by-side descriptive* summary of efficacy will illustrate the contribution of TAR-200 to the efficacy of the combination therapy^a

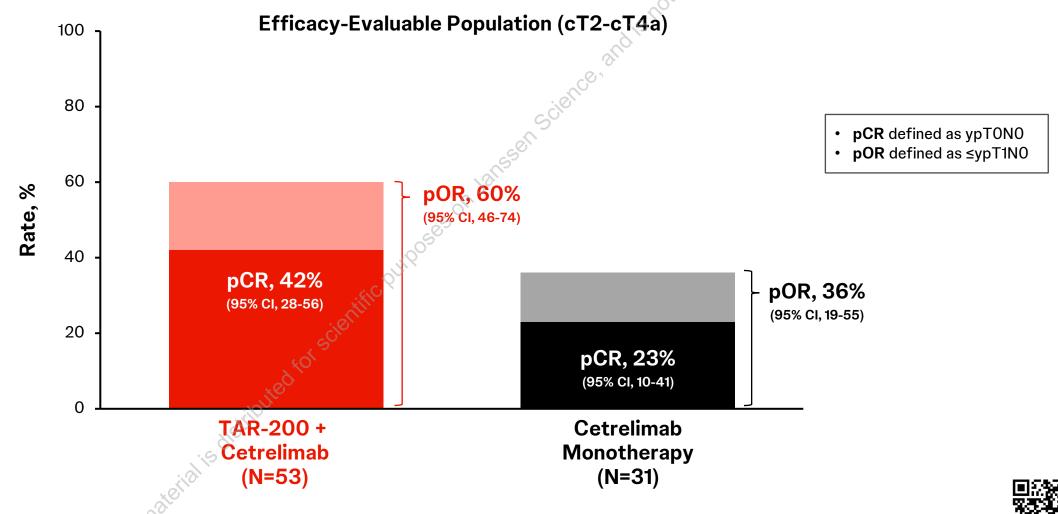
Interim
Analysis 2


After ~80 participants (~50 in Cohort 1 and ~30 in Cohort 2) complete the RC Results of **interim analysis 2** are presented here

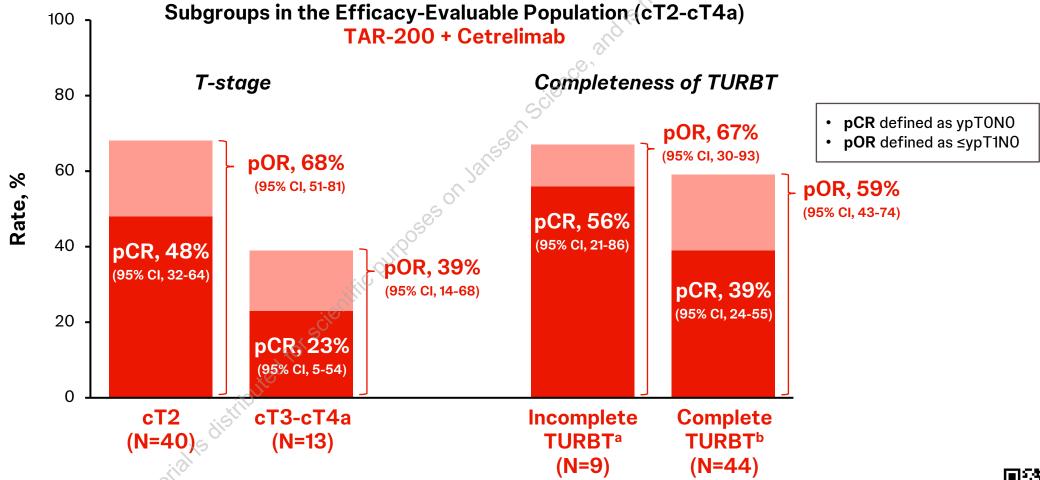
Analysis Populations

Safety: All patients who receive at least 1 dose of any study treatment **Efficacy evaluable:** All patients who have adequate RC results or who have radiographic progression or death before RC

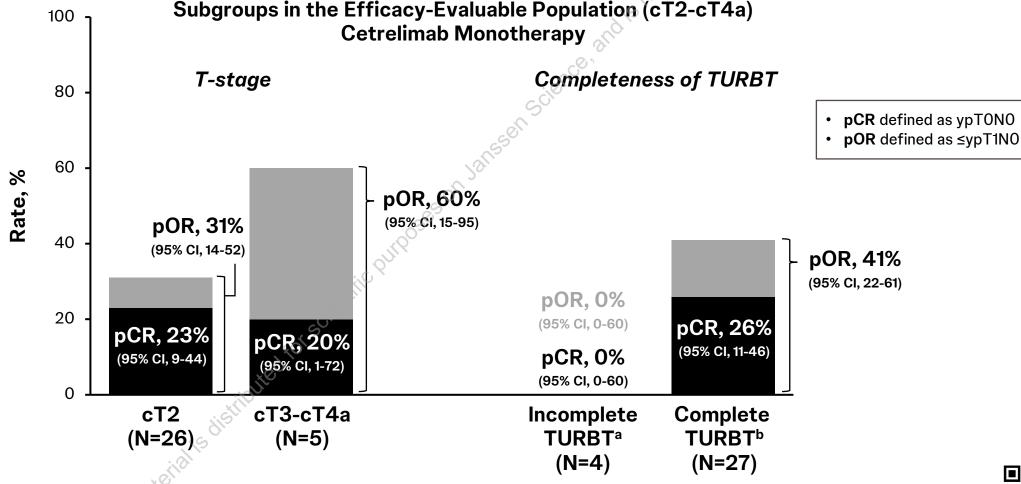
SunRISe-4: Patient Disposition


SunRISe-4: Baseline Characteristics

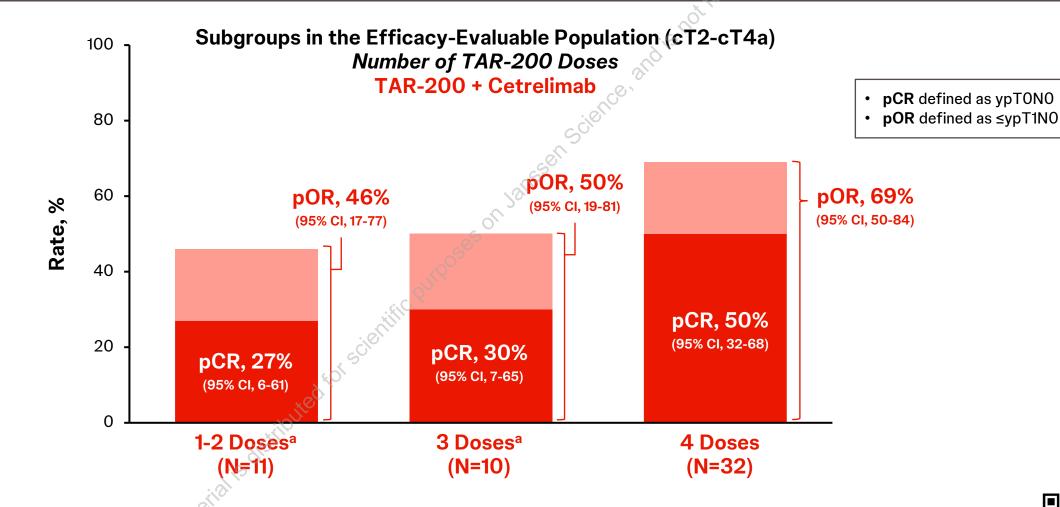
Characteristic	TAR-200 + Cetrelimab (N=79)	Cetrelimab Monotherapy (N=41)
Age, median (range), y	74.0 (54-85)	68.0 (48-80)
Sex, male, n (%)	68 (86.1)	34 (82.9)
Race, n (%) White Asian Other	52 (65.8) 18 (22.8) 9 (11.4)	29 (70.7) 10 (24.4) 2 (4.9)
Region, n (%) America Asia Western Europe	29 (36.7) 19 (24.1) 31 (39.2)	12 (29.3) 11 (26.8) 18 (43.9)
Nicotine use history, n (%) Current Former Never	20 (25.3) 39 (49.3) 20 (25.3)	11 (26.8) 22 (53.7) 8 (19.5)


Characteristic	TAR-200 + Cetrelimab (N=79)	Cetrelimab Monotherapy (N=41)
ECOG PS 1, n (%)	14 (17.7)	10 (24.4)
NAC, n (%) Ineligible Refusing Residual disease (visibly incomplete TURBT), n (%)	31 (39.2) 48 (60.8) 16 (20.3)	15 (36.6) 26 (63.4) 6 (14.6)
Tumor stage, n (%) cT2 cT3-4a	62 (78.5) 17 (21.5)	35 (85.4) 6 (14.6)
UC with variant histology, n (%)	16 (20.3)	11 (26.8)
Prior intravesical therapy, n (%)	10 (12.7)	8 (19.5)

Neoadjuvant TAR-200 + Cetrelimab Showed Higher pCR and pOR Rates Than Cetrelimab Monotherapy



Efficacy by Clinical Stage and Completeness of TURBT in the TAR-200 + Cetrelimab Cohort



Efficacy by Clinical Stage and Completeness of TURBT in the Cetrelimab Monotherapy Cohort

Efficacy by TAR-200 Dose Exposure

Most Frequent Treatment-Related Adverse Events With TAR-200 + Cetrelimab Were Grade 1-2 Urinary Events

- Immune-related AEs of grade ≥3
 - TAR-200 + Cetrelimab:6.3% of patients
 - Cetrelimab Monotherapy:4.9% of patients
- Median time to RC
 - TAR-200 + Cetrelimab:13.7 weeks
 - Cetrelimab Monotherapy:12.6 weeks

Patients With ≥1 Event, n (%)ª	TAR-200 + Cetrelimab (N=79)	Cetrelimab Monotherapy (N=41)
≥1 TRAE (any grade) ^b Dysuria Pollakiuria	57 (72.2)	18 (43.9)
Dysuria	22 (27.8)	22 (18.3)
Pollakiuria	22 (27.8)	22 (18.3)
Micturition urgency	12 (15.2)	12 (10.0)
Hematuria	11 (13.9)	11 (9.2)
Serious TRAEs	9 (11.4)	1 (2.4)
TRAEs grade ≥3	9 (11.4)	2 (4.9)
TRAEs leading to discontinuation	10 (12.7)	0
TRAEs leading to TAR-200 discontinuation ^c	7 (8.9)	_
TRAEs leading to cetrelimab discontinuation ^d	6 (7.6)	0
TRAEs leading to death	0	1 (2.4) ^e

AE, adverse event; TRAE, treatment-related adverse event; CTCAE, Common Terminology Criteria for Adverse Events.

 $^{\mathrm{a}}$ Median follow-up (post RC) was 10.2 weeks. AEs were reported using CTCAE v5.0.

^bTRAEs occurring in ≥10% of patients in either treatment group are listed.

°Most frequent TRAE leading to TAR-200 discontinuation was pollakiuria (n=2).

dNo TRAE led to cetrelimab discontinuation in ≥2 patients.

eTRAE leading to death was reported as hyperglycemic, hyperosmolar nonketotic syndrome (n=1).

SunRISe-4: Conclusions

- The combination of neoadjuvant TAR-200 + cetrelimab showed pCR and pOR rates of 42% and 60%, respectively, in patients with MIBC
 - In the cT2 subgroup, 48% of patients treated with TAR-200 + cetrelimab achieved pCR, and 68% were downstaged to ≤T1 at RC
- Cetrelimab monotherapy provided pCR and pOR rates of 23% and 35%, respectively
- TAR-200 + cetrelimab had a manageable safety profile in the neoadjuvant setting
 - Most TRAEs with TAR-200 + cetrelimab were low grade
 - The rate of discontinuations due to TRAEs was low at 13%

SunRISe-4 demonstrates for the <u>first time</u> a benefit of the addition of TAR-200, an intravesical targeted releasing system, to checkpoint inhibition as neoadjuvant treatment in patients with MIBC

Acknowledgments

https://www.congresshub.com/Oncology/ ESMO2024/TAR-200/Necchi

Copies of this presentation obtained through QR (Quick Response) and/or text key codes are for personal use only and may not be reproduced without written permission of the authors.

Ongoing studies of TAR-200:

SunRISe-1

BCG-unresponsive HR NMIBC (Cohorts 1-3: CIS; Cohort 4: papillary only) NCT04640623

SunRISe-2

RC-ineligible/-refusing MIBC NCT04658862

SunRISe-3

BCG-naive HR NMIBC NCT05714202

SunRISe-4

Neoadjuvant MIBC NCT04919512 Presented here

SunRISe-5

Papillary-only, BCG-exposed, RC-ineligible/refusing, recurrent HR NMIBC NCT06211764

- We thank the patients who are participating in the study, their families, and the investigators and clinical research staff from the study centers
- We thank Cinty Gong, Janssen Research & Development, for contributions to study design, study initiation, and data collection
- Writing assistance was provided by Flint Stevenson-Jones, PhD, and Benjamin Ricca, PhD, of Parexel, and was funded by Janssen Global Services, LLC
- This study is sponsored by Janssen Research & Development LLC, a Johnson & Johnson company