

Mechanisms of Acquired Resistance to First-line Amivantamab Plus Lazertinib Versus Osimertinib in Patients With *EGFR*-mutant Advanced Non-Small Cell Lung Cancer

An Early Analysis from the Phase 3 MARIPOSA Study

Benjamin Besse¹, Se-Hoon Lee², Shun Lu³, Daniil Stroyakovskiy⁴, Ozan Yazici⁵, Jeronimo Rafael Rodriguez-Cid⁶, Hidetoshi Hayashi⁷, Danny Nguyen⁸, James Chih-Hsin Yang⁹, Maya Gottfried¹⁰, Ana Caroline Zimmer Gelatti¹¹, Scott Owen¹², Sai-Hong Ignatius Ou¹³, Mariah Ennis¹⁴, Seema Sethi¹⁴, Joshua M Bauml¹⁴, Jiarui Zhang¹⁴, Joshua C Curtin¹⁴, Byoung Chul Cho¹⁵

¹Paris-Saclay University, Gustave Roussy, Villejuif, France; ²Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; ³Department of Medical Oncology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; ⁴Moscow City Oncology Hospital No. 62, Moscow, Russia; ⁵Department of Medical Oncology, Gazi University Faculty of Medicine, Ankara, Turkey; ⁶Médica Sur Ciudad de México, Mexico; ⁷Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka, Japan; ⁶City of Hope National Medical Center, Duarte, CA, USA; ⁵Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan; ¹⁰Meir Medical Center, Kfar-Saba, Israel; ¹¹Uniao Brasileira de Educaçao e Assistencia-Hospital Sao Lucas da PUCRS, Porto Alegre-RS, Brazil; ¹⁴McGill University Health Centre, Cedars Cancer Centre, Montreal, Quebec, Canada; ¹³Chao Family Comprehensive Cancer Center, University of California Irvine School of Medicine, Orange, CA, USA; ¹⁴Junison Research & Development, Spring House, PA, USA; ¹⁵Division of Medical Oncology, Sonsei Cancer Center, Yoneei University Cellege of Medicine, Seoul, South Korea

opies of this presentation obtained through OR de are for personal use only and may not be produced without written permission of the authors

DECLARATION OF INTERESTS

Benjamin Besse

Consulting or advisory role for Chugai Pharma, Daiichi Sankyo, F. Hoffmann LaRoche, PharmaMar, Sanofi/Aventis, AbbVie, Da voltera, Lilly, Ellipses Pharma, Janssen, OSE Immunotherapeutics, Taiho Oncology, Turning Point Therapeutics, BioNTech SE, Bristol Myers Squibb, CureVac, Regeneron, Genmab, Immunocore, MSD Oncology, Owkin

Received honoraria from AbbVie, Roche, Janssen, MSD, AstraZeneca, Chugai Pharma, Daiichi Sankyo, Hedera Dx, Sanofi/Aventis, Springer Healthcare Ltd

Received research funding from AstraZeneca, AbbVie, Amgen, Sanofi, Daiichi Sankyo, Janssen Oncology, Roche/Genentech, Ellipses Pharma, Genmab, MSD Oncology, PharmaMar, Taiho Pharmaceutical, Nuvalent, Inc, Enliven Therapeutics, Prelude Therapeutics, Takeda, Beigene, GlaxoSmithKline, OSE Immunotherapeutics, Anheart Therapeutics

Dr. Beniamin Besse

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Background

- Progression on osimertinib is nearly inevitable due to acquired resistance that can be diverse and polyclonal^{1–3}
- The most common EGFR TKI resistance mechanisms are EGFR and MET alterations^{1,4}
- Amivantamab, a multi-targeted EGFR-MET bispecific antibody with immune cell–directing activity, targets *EGFR* and *MET*-based resistance upfront, with the potential to alter the spectrum of acquired resistance⁵
- Amivantamab + lazertinib significantly improved PFS versus osimertinib (HR, 0.70; P<0.001) in the phase 3 MARIPOSA study, and is now approved in the US for the first-line treatment of EGFR-mutant NSCLC^{6,7}

Here, we report report acquired resistance mechanisms for patients with disease progression on first-line amivantamab + lazertinib vs osimertinib

Ex19del, exon 19 deletion.

1. Leonetti A, et al. Br J Cancer 2019;121:725-37. 2. Yu HA, et al. J Clin Oncol 2023;41:Suppl:9074. 3. Ramalingam SS, et al. Ann Oncol 2018;Suppl 8:VIII740-VIII740. 4. Chmielecki J, et al. Nat Commun 2023; 14(1):1070. 5: Cho BC, et al. Clin Lung Cancer 2022;24(2):89-97. 6. Cho BC, et al. N Engl J Med. 2024. doi: 10.1056/NEJMoa2403614. 7. RYBREVANT® (amivantamab-vmjw) injection, for intravenous use [package insert]. Horsham, PA: Janssen Biotech, Inc.; 2024.

MARIPOSA Study Design

Paired blood samples were collected at baseline and EOT^a for analysis of detectable ctDNA by NGS^b

Focus of this presentation

MARIPOSA (Clinical Trials.gov Identifier: NCT04487080) enrollment period: November 2020 to May 2022. Last EOT sample was collected Feb 2024.

ctDNA, circulating tumor DNA; EOT, end of treatment; Ex19del, exon 19 deletion; NGS, next-generation sequencing.

opies of this presentation obtained through QR code are for personal use only and may not be reproduced without written permission of the authors

ctDNA Analysis for Acquired Resistance

^aSample taken within 90 days of discontinuation if EOT sample was not available. Last EOT sample was collected Feb 2024. Median follow-up was 32.6 months. ctDNA, circulating tumor DNA; EOT, end of treatment.

copies of this presentation obtained through QR code are for personal use only and may not be reproduced without written permission of the authors

Acquired *MET* amplifications were ~3-fold lower and *EGFR* resistance mutations were ~8-fold lower for amivantamab + lazertinib versus osimertinib

1% of patients in the osimertinib arm had focal MET amplifications vs 1.8% in the amivantamab + lazertinib arm. MET amplifications are defined as >2.2 copy number alterations.

QR code are for personal use only

Acquired *MET* amplifications were ~3-fold lower and *EGFR* resistance mutations were ~8-fold lower for amivantamab + lazertinib versus osimertinib

1% of patients in the osimertinib arm had focal MET amplifications vs 1.8% in the amivantamab + lazertinib arm. MET amplifications are defined as >2.2 copy number alterations.

MET and EGFR Independent Resistance Mechanisms

Amivantamab + lazertinib did not meaningfully increase other molecular escape pathways and had a low rate (0.9%) of *TP53/RB1* loss (associated with SCLC transformation)¹

Includes BRAF and KRAS. Includes CCNE1, CDKN2A, CDK4, CDK6, and CCND2.
 Offin M. et al. J Thorac Oncol. 2019;14(10):1784–1793.

Acquired Resistance Mutational Landscape

De MARIPOSA Ami + Laz in 1L EGFR+ NSCLC

Amivantamab + Lazertinib (n=36)

- No clear resistance mechanisms (unknown) were detected in 86 (61%) for osimertinib and 77 (68%) for amivantamab + lazertinib
- Among patients with known resistance mechanisms, osimertinib had a more heterogeneous mutational landscape than
 amivantamab + lazertinib

Osimertinib (n=54)

Copies of this presentation obtained through QR code are for personal use on and may not be reproduced without written permission of the author

Frequency of Complex Resistance

Complex resistance was defined as having 2 or more resistance pathway alterations detected by ctDNA

aFor osimertinib, EGFR mutations included C797S/L718X/G724X. For, amivantamab + lazertinib, only one EGFR C797S mutation was detected

ngress

ctDNA, circulating tumor DNA.

Copies of this presentation obtained through QR code are for personal use only and may not be reproduced without written permission of the authors

Detection of EGFR Driver Mutations

Ami + Laz in

BL, baseline; ctDNA, circulating tumor DNA; EOT, end of treatment; Ex19del, exon 19 deletion.

Detection of EGFR Driver Mutations

Lower rates of Ex19del or L858R detected in ctDNA were seen with amivantamab + lazertinib vs osimertinib at EOT

Ami + Laz in 1L EGFR+ NSCLC

BL, baseline; ctDNA, circulating tumor DNA; EOT, end of treatment; Ex19del, exon 19 deletion.

Copies of this presentation obtained through QR code are for personal use on and may not be reproduced without written permission of the author

Detection of EGFR Driver Mutations

Lower rates of Ex19del or L858R detected in ctDNA were seen with amivantamab + lazertinib vs osimertinib at EOT

Ami + Laz in 1L EGFR+ NSCLC

BL, baseline; ctDNA, circulating tumor DNA; EOT, end of treatment; Ex19del, exon 19 deletion.

congress

^aP=0.003.

Copies of this presentation obtained through QR code are for personal use only and may not be reproduced without written permission of the authors

Conclusions

- Using ctDNA NGS analysis, amivantamab + lazertinib significantly reduced the incidence of MET amplifications and EGFR resistance alterations vs osimertinib
 - MET amplification: 4.4% vs 13.6%; P=0.017
 - EGFR resistance mutations: 0.9% vs 7.9%; P=0.014
- No significant differences were observed among *MET* and *EGFR* independent resistance mechanisms (*HER2* amplification, *PI3K, RAS/RAF,* cell cycle) between arms
- Amivantamab + lazertinib had a low rate (0.9%) of TP53/RB1 loss (associated with SCLC transformation)¹
- Osimertinib had a higher frequency of complex resistance than amivantamab + lazertinib (42.6% vs 27.8%)

Amivantamab + lazertinib's multi-targeted EGFR/MET approach narrowed the spectrum and reduced the complexity of acquired resistance vs osimertinib

Also at ESMO 2024

Second interim overall survival for amivantamab + chemotherapy vs chemotherapy in *EGFR*-mutated NSCLC

> Saturday, Sep 14 9:10-9:20am (LBA54; Popat)

Preventing infusion-related reactions with intravenous amivantamab: Updated results

Saturday, Sep 14 12:00-1:00pm (1269P; Paz-Ares)

Amivantamab + FOLFOX/FOLFIRI in metastatic

colorectal cancer

Saturday, Sep 14 3:45-3:50pm (513MO; Pietrantonio)

opies of this presentation obtained through QR code are for personal use only and may not be reproduced without written permission of the authors

Acknowledgements

- Patients who participated in the study and their families and caregivers
- Physicians and nurses who cared for patients and staff members who supported this clinical trial
- Staff members at the study sites and involved in data collection/analyses
- Medical writing assistance was provided by Lumanity Communications Inc., and funded by Janssen Global Services, LLC

A total of 1074 patients from 28 countries randomized in the MARIPOSA study

Copies of this presentation obtained through QR code are for personal use only and may not be reproduced without written permission of the authors

