Final Survival Analysis of Daratumumab Plus Lenalidomide and Dexamethasone Versus Lenalidomide and **Dexamethasone in Transplant-ineligible** Patients With Newly Diagnosed Multiple **Myeloma: MAIA Study**

erry Facon', Shaji K. Kumar², Robert Z Orlowski³, Nizar Bahlis⁴, Philippe Moreau⁵, Hartmut Goldschmidt6, Supratik Basu≀ Cyrille Hulin⁹, Sonja Zweegman⁹, Katja Weisel¹⁰, Aurore Perrot¹, Caroline Jacquet²⁰, Noopur Raje¹⁰, Salomon Manier¹⁴, Ajai Charl¹⁵, Markus Hansson¹⁶, Mohamad Mohty¹⁷, Michel Delforge¹⁸, Torben Plesner¹⁹, Gordon Cook²⁰, Xavier Leleu²¹, Hang Quach²² Christopher P Venner^{23,24}, Mourad Tiab²⁵, Margaret Macro²⁶, Laurent Frenzel²⁷, George Wang²⁸, Huiling Pei²⁹, Kasey Bolyard³⁰, Robin Carson²⁸, Fredrik Borgsten³⁰, Saad Z Usmani³

"University of Lille, CHU de Lille, Service des Maladies du Sang, Lille, France; "Department of Hematology, Mayo Clinic Rochester, Rochester, MN, USA; "Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; "Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB. Canada: ⁵Hematology Department, University Hospital Hôtel-Dieu, Nantes, France: ⁶University Hospital Heidelberg, Internal Medicine V and National Center fo wager), in contract and the second Cancer Center Amsterdam, Amsterdam, The Netherlands; 10 Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Center Hamburg-Espendorf, Hamburg, Germany, "OCHU de Toulouse, IUCT-0, Université de Toulouse, IVS, Service d'Hématologie, Toulouse, France, "Hematolog Department, University Hospital, Nancy, France, "Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Boston, MA, USA; "University of Lille, CHU de Lille, Hôpital Huriez, Service d'Hématologie, Lille, France, "Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA: #Department of Hematology, Skåne University Hospital, Lund, Sweden: "Department of Clinical Hematology and Cellular Therapy, Saint-Antoine Hospita Sorbonne University, Paris, France, "University Hospital Leuven, Leuven, Belgium; "Vejle Hospital and University of Southern Demmark, Vejle, Demmark, "Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK; "CHU de Poitiers, Höpital la Milétrie, Poitiers, France; "University of Melbourne, st. Vincent's Hospital, Melbourne, Australia; 22Department of Medical Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada; 24BC Cancer – Vanco Centre, University of British Columbia, Vancouver, BC, Canada: 25CHD Vendée, La Roche-sur-Yon, France: 26CHU de Caen, Caen, France: 27Hôpital Necker-Enfants Malades, Paris SA: ³Memorial Solan Kettering Cancer Center, New York, NY, USA

Key Takeaway

With long-term follow-up in the MAIA study, the OS benefit observed with the addition of DARA to the Rd standard-of-care regimen continues to support the frontline use of D-Rd to maximize survival in **TIE patients with NDMM**

Conclusions

In this final analysis of the MAIA study, median OS was finally reached in the D-Rd group after a median follow-up of approximately 7.5 years, and D-Rd continued to demonstrate a clinical OS benefit versus Rd alone in TIE patients with NDMM

D-Rd also prolonged the median time to subsequent antimyeloma therapy, (i) and 28.8% of patients treated with Rd received DARA-based regimens as subsequent antimyeloma therapy, further emphasizing DARA as a standard of care for TIE patients with multiple myeloma

https://www.congresshub.com/Oncology/EHA2024/Daratumumab/Facon The QR code is intended to provide scientific information for individual refere and the information should not be altered or reproduced in any way!

Introduction

- Daratumumab (DARA) is a human IgGk monoclonal antibody targeting CD38 with a direct on-tumor¹⁻⁴ and immunomodulatory⁵⁻ mechanism of action, demonstrating greater cytotoxicity toward multiple myeloma cells ex vivo compared with analogs of other CD38 antibodies
- In the primary analysis of the global phase 3 MAIA study, with a median follow-up of 28.0 months, DARA plus lenalidomide and dexamethasone (D-Rd) significantly improved progression-free survival (PFS) compared to lenalidomide plus dexamethasone (Rd) alone in transplant-ineligible (TIE) patients with newly diagnosed multiple myeloma (NDMM)
- Updated results at a median follow-up of 64.5 months additionally demonstrated a significant overall survival (OS) benefit with D-Rd versus Rd alone (median, not reached vs 65.5 months; hazard ratio [HR], 0.66; 95% confidence interval [CI], 0.53-0.83; P = 0.0003) and a continued PFS benefit (median, 61.9 vs 34.4 months; HR, 0.55; 95% CI, 0.45-0.67; P < 0.0001)
- The clinical benefit with D-Rd versus Rd was even more pronounced among patients aged <70 years (OS: HR, 0.50; 95% CI, 0.27-0.90; P = 0.0179 and PFS: HR, 0.35; 95% CI, 0.21-0.56; P < 0.0001)
- Additionally, the rate of sustained minimal residual disease negativity (10⁻⁵ threshold) lasting ≥18 months was higher with D-Rd versus Rd (16.8% vs 3.3%, respectively; P < 0.0001), further substantiating the observed OS and PFS benefit¹²
- DARA is approved in combination with other standard-of-care regimens for patients with NDMM¹³ and has been used to treat >518,000 patients worldwide.14 DARA has consistently demonstrated clinical efficacy as a frontline therapy in pivotal clinical trials¹⁵⁻¹
- Here, we present updated OS results for D-Rd versus Rd, in addition to new data on subsequent antimyeloma therapies, with a long-term median follow-up of approximately 7.5 years

Results

Patients

 In total, 737 patients were randomized in MAIA (D-Rd, n = 368; Rd, n = 369) Baseline patient characteristics were balanced between groups; the median (range) age was 73 (45-90) years, with 43.6% of patients aged \geq 75 years (**Table 1**)

Table 1: Demographic and baseline disease characteristics of the ITT population

Characteristic	D-Rd (n = 368)	Rd (n = 369)
Age	(11 - 500)	(11 - 303)
Median (range), years	73 (50-90)	74 (45-89)
≥75, n (%)	160 (43.5)	161 (43.6)
Male, n (%)	189 (51.4)	195 (52.8)
ECOG PS, n (%)		
0	127 (34.5)	123 (33.3)
1	178 (48.4)	187 (50.7)
≥2	63 (17.1)	59 (16.0)
ISS disease stage, n (%)		
1	98 (26.6)	103 (27.9)
11	163 (44.3)	156 (42.3)
	107 (29.1)	110 (29.8)
Type of measurable disease, n (%)		
IgG	225 (61.1)	231 (62.6)
IgA	65 (17.7)	66 (17.9)
Other ^b	9 (2.4)	10 (2.7)
Detected in urine only	40 (10.9)	34 (9.2)
Detected as serum FLC only	29 (7.9)	28 (7.6)_
Cytogenetic risk,° n (%)		
n	319	323
Standard risk	271 (85.0)	279 (86.4)
High risk	48 (15.0)	44 (13.6)

With a median (range) follow-up of 89.3 (0-102.2) months, a 33% reduction in the risk

D-Rd group versus those in the Rd group (90.3 vs 64.1 months, respectively; Figure 1)

7-year OS rate

53.1% Median:

39.3%

30 36 42 48 54 60 66 72 78 84 90 96 102 108

OS (months

D-Rd 368 346 338 328 305 297 280 266 249 246 233 217 206 195 168 90 21 0 0

Rd 369 343 324 308 294 270 251 232 213 194 182 164 149 138 120 59

90.3 month

Median

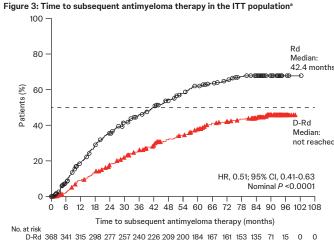
64.1 months


Median OS was reached for the D-Rd group and was prolonged for patients in the

Methods

Study design

Assessments


- The Kaplan–Meier method was used to estimate distributions
- (North America vs other), and age (<75 years vs \geq 75 years)
- sole variable
- Additionally, the OS benefit with D-Rd versus Rd was generally consistent across pre-specified patient subgroups (Figure 2)

Subsequent antimyeloma therapy

Median time to subsequent antimyeloma therapy was not reached in the D-Rd group versus 42.4 months in the Rd group (Figure 3)

Rd 369 318 269 232 207 183 162 146 130 115 100 91 83 74 67 31 5 1 0

- Among treated patients, 140/364 (38.5%) patients in the D-Rd group and 201/365 (55.1%) patients in the Rd group received ≥1 subsequent antimyeloma therapy
- Across subsequent therapy lines, the most common antineoplastic agents after D-Rd and Rd, respectively, were bortezomib (27.7% vs 41.9%), DARA (6.3% vs 28.8%), and carfilzomib (7.7% vs 12.3%)
- No patient in either group reported the use of BCMA- or GPRC5D-targeted therapy - Two patients in the D-Rd group and 2 patients in the Rd group received investigational drugs in subsequent therapy lines

Overall survival

80

60

40

of death was observed with D-Rd versus Rd

Figure 1: OS with D-Rd and Rd in the ITT population

HR, 0.67; 95% CI, 0.55-0.82 Nominal P < 0.0001

1. de Weers M, et al. J Immunol. 2011;186(3):1840-1848. 2. Lammerts van Bueren J, et al. Blood. 2014;124(21):3474. 3. Overdijk MB, et al. MAbs. 2015;7(2):311-321. 4. Overdijk MB, et al. J Immunol. 2016;197(3):807-813. 5. Krejcik J, et al. Blood. 2014;124(21):3474. 3. Overdijk MB, et al. MAbs. 2015;7(2):311-321. 4. Overdijk MB, et al. J Immunol. 2016;197(3):807-813. 5. Krejcik J, et al. Blood. 2014;124(21):3474. 3. Overdijk MB, et al. MAbs. 2015;7(2):311-321. 4. Overdijk MB, et al. J Immunol. 2016;197(3):807-813. 5. Krejcik J, et al. Blood. 2014;124(21):3474. 3. Overdijk MB, et al. Mabs. 2015;7(2):311-321. 4. Overdijk MB, et al. J Immunol. 2016;197(3):807-813. 5. Krejcik J, et al. Blood. 2014;124(21):3474. 3. Overdijk MB, et al. Mabs. 2015;7(2):311-321. 4. Overdijk MB, et al. J Immunol. 2016;197(3):807-813. 5. Krejcik J, et al. Blood. 2014;124(21):3474. 3. Overdijk MB, et al. Mabs. 2015;7(2):311-321. 4. Overdijk MB, et al. J Immunol. 2016;197(3):807-813. 5. Krejcik J, et al. Blood. 2014;124(21):3474. 3. Overdijk MB, et al. Mabs. 2015;7(2):311-321. 4. Overdijk MB, et al. J Immunol. 2016;197(3):807-813. 5. Krejcik J, et al. Blood. 2014;124(21):3474. 3. Overdijk MB, et al. Mabs. 2015;7(2):311-321. 4. Overdijk MB, et al. J Immunol. 2016;197(3):807-813. 5. Krejcik J, et al. Blood. 2014;124(21):3474. 3. Overdijk MB, et al. Mabs. 2015;7(2):311-321. 4. Overdijk MB, et al. J Immunol. 2016;197(3):807-813. 5. Krejcik J, et al. Leukemia. 2021;35(2):573-584. 8. Kinder M, et al. Haematologica. 2021;106(7):2004-2008. 9. Facon T, et al. N Engl J Med. 2019;380(22):2104-2115. 5. Krejcik J, et al. Blood. 2014;124(21):3474. 3. Kinder M, et al. Haematologica. 2021;106(7):2004-2008. 9. Facon T, et al. N Engl J Med. 2019;380(22):2104-2115. 5. Krejcik J, et al. Haematologica. 2021;106(7):2004-2008. 9. Facon T, et al. N Engl J Med. 2019;380(22):2104-2115. 5. Krejcik J, et al. Haematologica. 2021;106(7):2004-2008. 9. Facon T, et al. N Engl J Med. 2019;380(22):2104-2115. 5. Krejcik J, et al. Krejcik J, et al. Krejcik J, et al. Krejcik J, 10. Weisel K, et al. HemoSphere. 2023;7(suppl 2):14-15. 11. Facon T, et al. Presented at: American Society of Hematology (ASH) Annual Meeting & Exposition; December 10-13, 2022; New Orleans, LA, USA. Poster 4553. 12. Kumar SK, et al. Presented at: American Society of Hematology (ASH) Annual Meeting & Exposition; December 10-13, 2022; New Orleans, LA, USA. Poster 4559, 13. DARZALEX® (daratumumab) injection, for intravenous use [package insert]. Janssen Biotech, Inc.; 2023. 14. Data on file. 15. Mateos MV, et al. Lancet. 2020;395(10218):132-141. 16. Moreau P, et al. Lancet Oncol. 2021;22(10):1378-1390. 17. Voorhees PM, et al. Lancet Haematol. 2023;10(10):e825-e837. 18. Sonneveld P, et al. N Engl J Med. 2024;390(4):301-313

In MAIA (ClinicalTrials.gov Identifier: NCT02252172), patients with NDMM who were ineligible for high-dose chemotherapy and autologous stem cell transplant (due to age ≥65 years or the presence of comorbidities) were randomized 1.1 to received D-Rd or Rd

Patients received 28-day cycles of Rd (R: 25 mg orally once daily on Days 1-21; d: 40 mg orally on Days 1, 8, 15, and 22) with or without DARA (16 mg/kg intravenously weekly during Cycles 1-2, every 2 weeks during Cycles 3-6, and every 4 weeks thereafter) until disease progression or unacceptable toxicity

• The primary endpoint was PFS; key secondary endpoints presented in this analysis include OS and time to subsequent antimyeloma therapy · Time-to-event endpoints were compared between treatment groups using a stratified log-rank test

- For the whole intent-to-treat (ITT) population, HRs and 95% Cls were estimated using a stratified Cox regression model with treatment as the sole variable and stratified with the following randomization stratification factors: International Staging System disease stage (I vs II vs III), region

For subgroups of patients in the ITT population, HRs and 95% Cls were estimated using a nonstratified Cox regression model with treatment as the

• Data on classes of subsequent therapies, subsequent regimens, rate of study treatment discontinuation, and causes of death were reported descriptively

	 A summary of first subsequent antimyel Proteasome inhibitor-based therapy 	13 1	
	therapy class in both the D-Rd and R respectively)		
-	 DARA-containing regimens were record patients in the D-Rd and Rd groups, r 		
	Among patients in the D-Rd and Rd grou		
	to first subsequent antimyeloma therap achieved a complete response or better	r and 18/130 (13.8%) and	
	achieved a very good partial response o	r better	
	Table 2: Summary of first subsequent ar		
	n (%)	D-Rd	Rd
	Patients who received subsequent therapy, n	140	201
	First subsequent therapy class ^{b,c}		
	First subsequent therapy class ^{b.c} PI only	69 (49.3)	101 (50.2)
	First subsequent therapy class ^{be} Pl only IMiD only	69 (49.3) 22 (15.7)	101 (50.2) 25 (12.4)
	First subsequent therapy class ^{bic} Pl only INtib only PI + IMiD	69 (49.3) 22 (15.7) 25 (17.9)	101 (50.2) 25 (12.4) 16 (8.0)
	First subsequent therapy class ^{b.c} Pl only IMiD only Pl + IMiD DARA monotherapy or combination	69 (49.3) 22 (15.7) 25 (17.9) 15 (10.7)	101 (50.2) 25 (12.4) 16 (8.0) 49 (24.4)
	First subsequent therapy class ^{&c} Pl only MiD only Pl + MiD DARA monotherapy or combination Other	69 (49.3) 22 (15.7) 25 (17.9)	101 (50.2) 25 (12.4) 16 (8.0)
	First subsequent therapy class ^{b.c} Pl only Mitio only Pl + IMiD DARA monotherapy or combination Other Most common first subsequent therapy regimens ^{b.d}	69 (49.3) 22 (15.7) 25 (17.9) 15 (10.7) 9 (6.4)	101 (50.2) 25 (12.4) 16 (8.0) 49 (24.4) 10 (5.0)
	First subsequent therapy class ^{b.c} PI only IMiD only PI + IMiD DARA monotherapy or combination Other Most common first subsequent therapy regimens ^{b.d} Bortezomib/cyclophosphamide/dexamethasone	69 (49.3) 22 (15.7) 25 (17.9) 15 (10.7) 9 (6.4) 19 (13.6)	101 (50.2) 25 (12.4) 16 (8.0) 49 (24.4) 10 (5.0)
	First subsequent therapy class ^{b.c} PI only IMiD only PI +1 MiD DARA monotherapy or combination Other Most common first subsequent therapy regimens ^{b.d} Bortezomib/cyclophosphamide/dexamethasone Bortezomib/dexamethasone	69 (49.3) 22 (15.7) 25 (17.9) 15 (10.7) 9 (6.4) 	101 (50.2) 25 (12.4) 16 (8.0) 49 (24.4) 10 (5.0)
	First subsequent therapy class ^{bit} PI only INID only PI + IMID DARA monotherapy or combination Other Most common first subsequent therapy regimens ^{bit} Bortezomib/dexamethasone Bortezomib/dexamethasone Bortezomib/melphalan/prednisone	69 (49.3) 22 (15.7) 25 (17.9) 15 (10.7) 9 (6.4) 	101 (50.2) 25 (12.4) 16 (8.0) 49 (24.4) 10 (5.0)
	First subsequent therapy class ^{b.c} PI only IMiD only Pi + IMiD DARA monotherapy or combination Other Most common first subsequent therapy regimens ^{b.d} Bortezomib/cyclophosphamide/dexamethasone Bortezomib/dexamethasone Bortezomib/dexamethasone DARA/bortezomib/dexamethasone	69 (49.3) 22 (15.7) 25 (17.9) 15 (10.7) 9 (6.4) 19 (13.6) 20 (14.3) 14 (10.0) 4 (2.9)	101 (50.2) 25 (12.4) 16 (8.0) 49 (24.4) 10 (5.0) 29 (14.4) 28 (13.9) 27 (13.4)
	First subsequent therapy class ^{b.c} Pl only IMiD only IN + IMiD DARA monotherapy or combination Other Most common first subsequent therapy regimens ^{b.d} Bortezomib/cyclophosphamide/dexamethasone Bortezomib/melphalan/prednisone DaRA/bortezomib/dexamethasone Lenalidomide/dexamethasone	69 (49.3) 22 (15.7) 25 (17.9) 15 (10.7) 9 (6.4) 19 (13.6) 20 (14.3) 14 (10.0) 4 (2.9) 13 (9.3)	101 (50.2) 25 (12.4) 16 (8.0) 49 (24.4) 10 (5.0) 29 (14.4) 28 (13.9) 28 (13.9) 27 (13.4) 16 (8.0)
	First subsequent therapy class ^{bit} PI only MitD only PI + IMID DARA monotherapy or combination Other Most common first subsequent therapy regimens ^{bitd} Bortezomib/cyclophosphamide/dexamethasone Bortezomib/dexamethasone Bortezomib/dexamethasone Lenalidomide/dexamethasone Bortezomib/plansone Lenalidomide/dexamethasone	69 (49.3) 22 (15.7) 25 (17.9) 15 (10.7) 9 (6.4) 	101 (50.2) 25 (12.4) 16 (8.0) 49 (24.4) 10 (5.0)
ınç	First subsequent therapy class ^{b.c} PI only IMiD only INID only PI + IMID DARA monotherapy or combination Other Most common first subsequent therapy regimens ^{b.d} Bortezomib/cyclophosphamide/dexamethasone Bortezomib/dexamethasone Bortezomib/dexamethasone Lenalidomide/dexamethasone Bortezomib/dexamethasone Bortezomib/penalidomide/dexamethasone Bortezomib/penalidomide/dexamethasone	69 (49.3) 22 (15.7) 25 (17.9) 15 (10.7) 9 (6.4) 19 (13.6) 20 (14.3) 14 (10.0) 4 (2.9) 13 (9.3) 9 (6.4) 8 (5.7)	101 (50.2) 25 (12.4) 16 (8.0) 49 (24.4) 10 (5.0) 29 (14.4) 28 (13.9) 27 (13.4) 16 (8.0) 3 (1.5) 3 (1.5)
mç	First subsequent therapy class ^{bit} PI only MitD only PI + IMID DARA monotherapy or combination Other Most common first subsequent therapy regimens ^{bitd} Bortezomib/cyclophosphamide/dexamethasone Bortezomib/dexamethasone Bortezomib/dexamethasone Lenalidomide/dexamethasone Bortezomib/plansone Lenalidomide/dexamethasone	69 (49.3) 22 (15.7) 25 (17.9) 15 (10.7) 9 (6.4) 	101 (50.2) 25 (12.4) 16 (8.0) 49 (24.4) 10 (5.0)

Safety and tolerability

• Among the safety population, 285 (78.3%) and 345 (94.5%) patients in the D-Rd and Rd groups, respectively, discontinued study treatment

- The primary reason for discontinuation in both the D-Rd and Rd groups was progressive disease (32.7% and 38.6%, respectively)
- A lower proportion of patients in the D-Rd group versus the Rd group discontinued study treatment due to adverse events (16.5% and 25.8%, respectively)

Deaths were reported for 173 (47.5%) patients in the D-Rd group and 218 (59.7%) patients in the Rd group, most frequently due to disease progression (Table 3)

Table 3: Summary of death and causes of death in the safety population

n (%)	D-Rd (n = 364)	Rd (n = 365)
Total number of patients who died during the study	173 (47.5)	218 (59.7)
Primary cause of death		
Disease progression	76 (20.9)	88 (24.1)
Adverse events	44 (12.1)	40 (11.0)
Related to study treatment ^b	14 (3.8)	10 (2.7)
Unrelated to study treatment	28 (7.7)	29 (7.9)
Other ^c	53 (14.6)	90 (24.7)
Infections/infestations	9 (2.5)	30 (8.2)
General disorders/administration site conditions ^d	11 (3.0)	5 (1.4)
Neoplasms (benign, malignant, or unspecified)	11 (3.0)	4 (1.1)
Cardiac disorders	1 (0.3)	8 (2.2)
Nervous system disorders	3 (0.8)	5 (1.4)
Unknown	13 (3.6)	27 (7.4)
Deaths within 30 days of last study treatment dose	31 (8.5)	35 (9.6)
Primary cause of death		
Disease progression	1 (0.3)	1 (0.3)
Adverse events	29 (8.0)	32 (8.8)
Related to study treatment ^b	11 (3.0)	10 (2.7)
Unrelated to study treatment	18 (4.9)	22 (6.0)
Other®	1(0.3)	2 (0.5)

Multiple Myeloma

42.4 month