Efficacy and Safety in Patients With Lenalidomide-Refractory Multiple Myeloma and 1–3 Prior Lines Who Received a Single Infusion of Ciltacabtagene Autoleucel as Study Treatment in the Phase 3 CARTITUDE-4 Trial

Hermann Einsele¹, M Hasib Sidiqi^{2,3}, Paolo Corradini⁴, Duncan Purtill², Binod Dhakal⁵, Lionel Karlin⁶, Salomon Manier⁷, Shinsuke lida⁸, Sebastian Giebel⁹, Simon J Harrison¹⁰⁻¹², Brea Lipe¹³, Abdullah M Khan¹⁴, Jordan M Schecter¹⁵, Carolyn C Jackson¹⁵, Tzu-min Yeh¹⁵, Arnob Banerjee¹⁶, William Deraedt¹⁷, Nikoletta Lendvai¹⁵, Carolina Lonardi¹⁸, Ana Slaughter¹⁹, Katherine Li¹⁶, Diana Chen²⁰, Jane Gilbert²¹, Tito Roccia²², Man Zhao²³, Nitin Patel²⁴, Erika Florendo²⁵, Mythili Koneru²⁴, Octavio Costa Filho²⁴, Dong Geng²⁴, Jesús San-Miguel²⁶, Kwee Yong²⁷

¹Universitätsklinikum Würzburg, Medizinische Klinik und Poliklinik II, Würzburg, Germany; ²Fiona Stanley Hospital, Perth, Western Australia, Australia; ³Curtin Medical School, Curtin University, Bentley Western Australia, Australia; ⁴University of Milan, Milan, Italy; ⁵Medical College of Wisconsin, Milwaukee, WI, USA; ⁶Centre Hospitalier Lyon Sud, Pierre-Bénite, France; ⁷University of Lille, Lille, France; ⁸Department of Hematology and Oncology, Nagoya City University Institute of Medical and Pharmaceutical Sciences, Nagoya, Japan; ⁹Department of Bone Marrow Transplantation and Onco-Hematology, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland; ¹⁰Peter MacCallum Cancer Centre, Melbourne, Australia; ¹¹Royal Melbourne Hospital, Melbourne, Australia; ¹²Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia; ¹³University of Rochester Medical Center, Rochester, NY, USA; ¹⁴Ohio State University Comprehensive Cancer Center, Columbus, OH, USA; ¹⁵Janssen Research & Development, Raritan, NJ, USA; ¹⁶Janssen Research & Development, Spring House, PA, USA; ¹⁷Janssen Research & Development, Beerse, Belgium; ¹⁸Janssen, Buenos Aires, Argentina; ¹⁹Cilag GmbH International, Zug, Switzerland; ²⁰Janssen Research & Development, Shanghai, China; ²¹Janssen Research & Development, High Wycombe, UK; ²²Janssen Global Services, Raritan, NJ, USA; ²³IQVIA, Shanghai, China; ²⁴Legend Biotech USA Inc., Somerset, NJ, USA; ²⁵Legend Biotech USA Inc., Piscataway, NJ, USA; ²⁶Cancer Center Clinica Universidad Navarra, Pamplona, Spain; ²⁷University College London Cancer Institute, London, UK

Presented by H Einsele at the Annual Meeting of the German, Austrian and Swiss Associations of Hematology and Medical Oncology (DGHO); October 11–14, 2024; Basel, Switzerland

https://www.congresshub.com/Oncology/ DGHO2024/Cilta-cel/Einsele-Efficacy

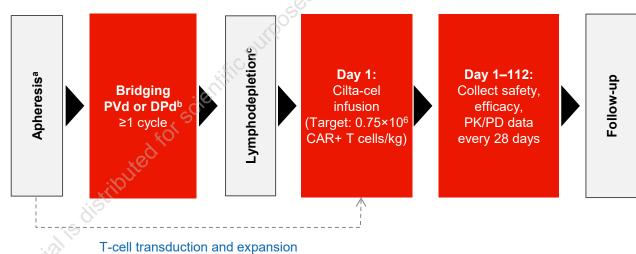
This QR code is intended to provide scientific information for individual reference, and the information should not be altered or reproduced in any way.

Disclosure of Conflicts of Interest

HE has served in a consulting/advisory role for Amgen, BMS/Celgene, GSK, Janssen, and Sanofi; and has received honoraria and research funding from Amgen. BMS/Celgene, GSK, Janssen, and Sanofi. MHS has served on speakers' bureaus for Antengene, BMS, Gilead, and Janssen; and has served on the board of directors/advisory committees for Janssen and Pfizer. PC has served in a consulting/advisory/lecturer role and received honoraria from AbbVie, ADC Therapeutics (DSMB), Amgen, Celgene, Daiichi Sankyo, Gilead/Kite, GSK, Incyte, Kyowa Kirin, Nerviano Medical Science, Janssen, Novartis, Pfizer, Roche, Sanofi, SOBI, and Takeda; has received honoraria from BeiGene; and has received travel and accommodations from AbbVie, Amgen, BMS, Celgene, Gilead/Kite, Janssen, Novartis, Roche, and Takeda. **DP** has received honoraria from BMS Celgene, Gilead, and Jazz. **HE** has served in a consulting/advisory role and has received honoraria, travel, and accommodations from Amgen, BMS/Celgene, GSK, Janssen, Novartis, Sanofi, and Takeda. BD has served in speakers' bureaus/consulting roles and has received honoraria from Arcellx, Genentech, GSK, Janssen, Karyopharm, Sanofi, and Pfizer. LK has served in a consulting role for Amgen, Celgene, GSK, Janssen, and Takeda; and has received honoraria from AbbVie, Amgen, Celgene, Janssen, Sanofi, and Takeda. SM has served on the board of directors/advisory committees for AbbVie, Amgen, Celgene/BMS, GSK, Janssen, Novartis, Pfizer, Regeneron, Roche, Sanofi, and Takeda. SI has served in a consulting role for AbbVie, BMS, GSK, Janssen, Novartis, Otsuka, Pfizer, Regeneron, Sanofi, and Takeda; has received honoraria from BMS, Janssen, Ono, Sanofi, and Takeda; and has received research funding from AbbVie, Alexion, Amgen, BMS, Chugai, Daiichi Sankyo, GSK, Janssen, Novartis, Ono, Otsuka, Pfizer, Sanofi, Shinogi, and Takeda. SG has served in speakers' bureaus/consulting roles and has received honoraria from AbbVie, Amgen, AstraZeneca, Gilead, Janssen, Novartis, Pfizer, and Roche; and has served in speakers' bureaus/received honoraria from Angelini, BMS, Servier, Swixx, and Zentiva. SJH has served in a consulting role for AbbVie, Amgen, Celgene/BMS, Eusa, F. Hoffmann-La Roche Ltd/Genentech, GSK, Haemalogix, Janssen Cilag, Novartis, and Terumo BCT; has received research funding from Celgene/BMS, GSK, Haemalogix, and Janssen Cilag; has served on speakers' bureaus for AbbVie, Amgen, Celgene/BMS, Eusa, F. Hoffmann-La Roche Ltd/Genentech, GSK, Janssen Cilag, and Novartis; and has served on the board of directors/advisory committees for Haemalogix. BL has served in a consulting role for AbbVie, BMS, GSK, and Janssen. AMK has received honoraria from Janssen; research funding from BMS and Secura Bio; has served in a consulting role for Secura Bio; and has served on speakers' bureaus for Amgen and Sanofi. JMS is employed by and holds patents/royalties from Janssen. CCJ was an employee/holds stock and other ownership interests in Janssen. Research & Development. T-mY, AB, NL, AS, KL, and TR are employed by/have stock and other ownership interests in Janssen. WD, CL, DC, JG, and MZ are employed by Janssen. NP, EF, and OCF are employed by/have stock and other ownership interests in Legend Biotech. MK and DG are employed by Legend Biotech. JS-M has received honoraria and has served in a consulting/advisory role for AbbVie, Amgen, BMS, Celgene, GSK, Haemalogix, Karyopharm, MSD, Pfizer, Roche, Regeneron, Sanofi, SecuraBio, and Takeda; and has received honoraria/served in a consulting role for Janssen and Novartis. **KY** has no disclosures to report.

Introduction: CARTITUDE-4

- Cilta-cel is a dual-binding, BCMA-directed CAR-T cell therapy approved for the treatment of RRMM after ≥4 and ≥3 prior LOT in the US and Europe, respectively^{1,2}
- The phase 3 CARTITUDE-4 study (NCT04181827) is comparing cilta-cel with SOC in patients with lenalidomide-refractory MM after 1–3 prior LOT³
- At the 15.9-month median follow-up in the ITT population, a single infusion of cilta-cel vs SOC:
 - Significantly improved PFS (HR, 0.26; P<0.001)³
 - Resulted in a higher ORR (84.6% vs 67.3%) and a higher rate of \geq CR (73.1% vs 21.8%)³
- The ITT analysis included all patients who were randomized; in the cilta-cel arm, study treatment included treatments prior to infusion, ie, apheresis, bridging therapy, and lymphodepletion
- To describe outcomes in the patients who received cilta-cel, we report the efficacy and safety in patients who
 received cilta-cel as study treatment in CARTITUDE-4


BCMA, B-cell maturation antigen; CAR, chimeric antigen receptor; cilta-cel, ciltacabtagene autoleucel; CR, complete response; HR, hazard ratio; ITT, intent-to-treat; LOT, line of therapy; MM, multiple myeloma; ORR, overall response rate; PFS, progression-free survival; RRMM, relapsed/refractory multiple myeloma; SOC, standard of care; US, United States. 1. CARVYKTI® (ciltacabtagene autoleucel). Prescribing information. Janssen Biotech, Inc.; 2022. 2. CARVYKTI® (ciltacabtagene autoleucel). European Medicines Agency. Orphan maintenance assessment report. June 7, 2022. Accessed September 19, 2023. https://www.ema.europa.eu/en/documents/orphan-maintenance-report/carvykti-orphan-maintenance-assessment-report-initial-authorization_en.pdf. 3. San-Miguel J, et al. *N Engl J Med* 2023;389:335-47.

CARTITUDE-4 Cilta-cel Arm Patients and **Study Treatments**

- Key eligibility criteria:
 - Lenalidomide-refractory RRMM
 - 1–3 prior LOT, including a PI and IMiD
 - -ECOG PS ≤1
 - No prior CAR-T or BCMA-directed therapy

CARTITUDE-4 study treatments (cilta-cel as-treated population)

^aStart of study treatment. ^bPhysicians' choice. ^cCyclophosphamide 300 mg/m² plus fludarabine 30 mg/m² daily for 3 days. BCMA, B-cell maturation antigen; CAR, chimeric antigen receptor; cilta-cel, ciltacabtagene autoleucel; DPd, daratumumab, pomalidomide, and dexamethasone; ECOG PS, Eastern Cooperative Oncology Group performance status; IMiD, immunomodulatory drug; LOT, line of therapy; PD, pharmacodynamics; PK, pharmacokinetics; PI, proteasome inhibitor; PVd, pomalidomide, bortezomib, and dexamethasone: RRMM. relapsed/refractory multiple myeloma.

CARTITUDE-4 Cilta-cel Arm Assessments

- Treatment responses and disease progression were assessed per IMWG criteria using a validated computer algorithm¹
- MRD negativity (10⁻⁵ threshold) was assessed by next-generation sequencing starting at day 56 post infusion
- Post-infusion PFS and OS endpoints were evaluated using the Kaplan-Meier method
- CRS and ICANS were assessed per ASTCT criteria²
- Individual symptoms of CRS and ICANS were graded per NCI-CTCAE³
- Other AEs were graded per NCI-CTCAE criteria

AE, adverse event; ASTCT, American Society for Transplantation and Cellular Therapy; CRS, cytokine release syndrome; ICANS, immune effector cell–associated neurotoxicity; IMWG, International Myeloma Working Group; MRD, minimal residual disease; NCI-CTCAE, National Cancer Institute Common Terminology Criteria for Adverse Events; OS, overall survival; PFS, progression-free survival. 1. Palumbo A, et al. *N Engl J Med* 2016;375:754-66. 2. Lee DW, et al. *Biol Blood Marrow Transplant* 2019;25:625-38. 3. Department of Health and Human Services. Common terminology criteria for adverse events (CTCAE). Version 5.0; 2017.

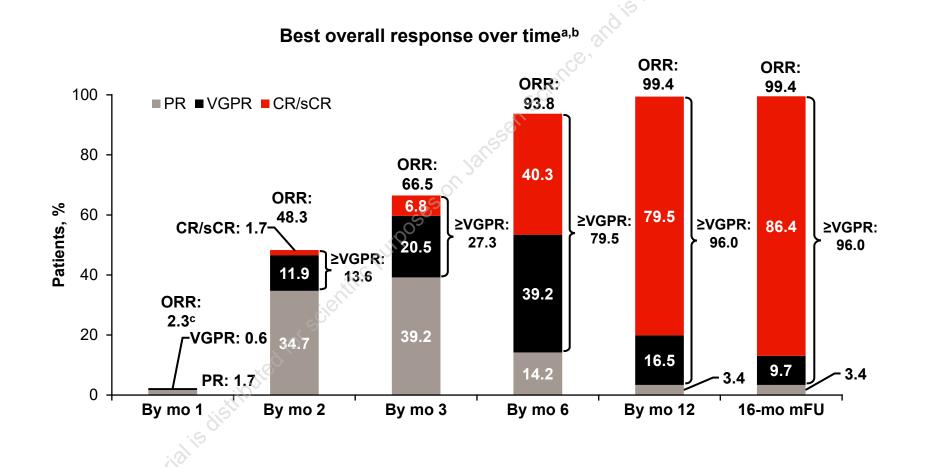
CARTITUDE-4 Cilta-cel Arm Population and Baseline Characteristics

- 208 patients were randomized to the cilta-cel arm (ITT) and 176 received cilta-cel as study treatment (as-treated population)¹
- As of November 1, 2022, median follow-up from randomization in the as-treated population was 16 months (range, 3.8–27.3)
- Median time from apheresis to cilta-cel infusion was 79 days (range, 45–246)¹
- 21.6% of patients in the as-treated population received 1 bridging therapy cycle, 58.5% received 2 cycles, and 19.9% received 3–6 cycles

^aMaximum value from bone marrow biopsy and bone marrow aspirate selected if both results are available. ^bIncluding extramedullary and bone-based plasmacytomas with measurable soft tissue component. ^cCytogenetics data for the as-treated and ITT populations were available for 175 and 207 patients, respectively. ^d39 (22.3%) patients with del(17p); 23 (13.1%) with t(4;14), 3 (1.7%) with t(14;16), 77 (44.0%) with gain/amp(1q), 34 (19.4%) with ≥2 high-risk abnormalities, and 11 (6.3%) with unknown cytogenetic risk. ^e49 (23.7%) patients with del(17p), 30 (14.5%) with t(4;14), 3 (1.4%) with t(14;16), 89 (43.0%) with gain/amp(1q), 43 (20.8%) with ≥2 high-risk abnormalities, and 15 (7.2%) with unknown cytogenetic risk. ¹Including 1 PI, 1 IMiD, and 1 anti-CD38 monoclonal antibody. ECOG PS, Eastern Cooperative Oncology Group performance status; LOT, line of therapy; ISS, International Staging System; ITT, intent-to-treat, 1, San-Miguel J, et al. *N Engl J Med* 2023;389:335-47.

Characteristic	As-treated population (n=176)	ITT population (n=208)		
Age, median (range), years	61 (27–78)	61.5 (27–78)		
Male, n (%)	101 (57.4)	116 (55.8)		
Race, n (%)				
Asian	15 (8.5)	16 (7.7)		
Black or African American	6 (3.4)	6 (2.9)		
White	136 (77.3)	157 (75.5)		
Not reported	19 (10.8)	28 (13.5)		
ECOG PS, n (%)				
0	103 (58.5)	114 (54.8)		
1	73 (41.5)	93 (44.7)		
ISS stage, n (%)				
1	121 (68.8)	136 (65.4)		
- 11	45 (25.6)	60 (28.8)		
	10 (5.7)	12 (5.8)		
Bone marrow plasma cells ≥60%,ª n (%)	33 (18.9)	42 (20.4)		
Presence of soft tissue plasmacytomas, ^b n (%)	30 (17.0)	44 (21.2)		
Number of prior LOT, n (%)				
1	60 (34.1)	68 (32.7)		
2	66 (37.5)	83 (39.9)		
3	50 (28.4)	57 (27.4)		
High-risk cytogenetics, ^c n (%)	105 (60.0) ^d	123 (59.4) ^e		
Triple-class refractory, ^f n (%)	20 (11.4)	30 (14.4)		

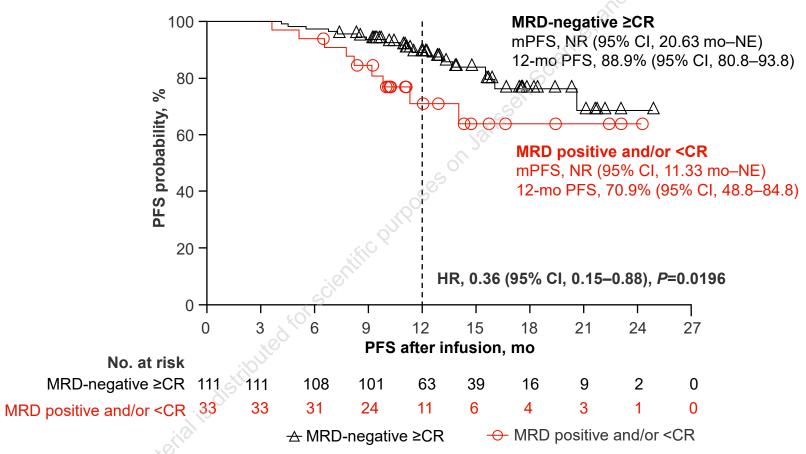
Efficacy in the Cilta-cel As-Treated Population


- ORR was 99.4% (≥CR, 86.4%)
- Responses deepened over time
- Median DOR and median PFS were not reached
- MRD-evaluable patients (n=144) with MRD-negative ≥CR had improved PFS from infusion vs those who remained MRD positive and/or had <CR (*P*=0.0196)

andle	n=176
ORR after randomization, n (%)	175 (99.4)
≥CR, %	152 (86.4)
Time to first response after randomization, mo (range)	2.1 (0.9–11.1)
PFS rate 12 mo after infusion, % (95% CI)	84.9 (78.2–89.7)
OS rate 12 mo after infusion, % (95% CI)	91.9 (86.6–95.1)
MRD negative at 10^{-5} threshold after infusion, n (%)	126 (71.6)
In MRD evaluable,ª n/N (%)	126/144 (87.5)
MRD-negative ≥CR, n/N (%)	111/144 (77.1)

^aPatients with a bone marrow sample evaluable for MRD at 10⁻⁵ threshold. cilta-cel, ciltacabtagene autoleucel; CR, complete response, DOR, duration of response, mo, month(s); MRD, minimal residual disease; ORR, overall response rate; OS, overall survival; PFS, progression-free survival.

Responses Deepened Over Time in the Cilta-cel As-Treated Population



^aBest overall response by each time point post randomization and at CCO in the as-treated population (n=176). ^bSum of best response rates may not be equal to ORR due to rounding. ^cNo patients had ≥CR by month 1 post randomization. CCO, clinical cut-off; cilta-cel, ciltacabtagene autoleucel; CR, complete response; mFU, median follow-up; mo, month; ORR, overall response rate; PR, partial response; sCR, stringent complete response; VGPR, very good partial response.

MRD-Negative ≥CR was Associated With Improved PFS

PFS after infusion in patients by achievement of MRD negativity and best response in MRD-evaluable patients

PFS from infusion in MRD-evaluable patients in the cilta-cel as-treated population.

cilta-cel, ciltacabtagene autoleucel; CR, complete response; HR, hazard ratio; mo, month(s); mPFS, median progression-free survival; MRD, minimal residual disease, NE, not estimable; NR, not reached; PFS, progression-free survival.

Safety in the Cilta-cel As-Treated Population

- CRS occurred in 76.1% of patients and were mostly grade 1/2; all cases resolved^{1,2}
- CAR-T cell neurotoxicity occurred in 20.5% of patients; none were fatal^{1,2}
 - ICANS occurred in 4.5% of patients; all were grade 1/2 and resolved^{1,2}
 - Cranial nerve palsy (9.1%), peripheral neuropathy (2.8%), and MNTs (0.6%) were mostly grade 1/2^{1,2}
 - By the CCO, all but 2 of the cranial nerve palsy and 2 of the peripheral neuropathy cases had resolved; the MNT case (grade 1) had not yet resolved by the CCO^{3,4}

	As-treated population (n=176)			
AE, n (%)	Any Grade	Grade 3/4	Median time to onset,ª days	Median duration, ^ь days
CRS	134 (76.1)	2 (1.1)	8	3
Neurotoxicity	36 ^c (20.5)	5 (2.8)	_	_
ICANS	8 (4.5)	0 ^d	10	2
Other ^e	30 (17.0)	4 (2.3)	_	_
Cranial nerve palsy	16 (9.1) ^f	2 (1.1)	21	77
Peripheral neuropathy	5 (2.8)	1 (0.6)	63	201
MNT	1 (0.6)	0	85	253 ^g

^aTime to onset from cilta-cel infusion. ^bCalculated regardless of resolution of event. ^cSeveral patients had both ICANS and "other" neurotoxicity. ^dGrade 3 syncope reported as a symptom of grade 2 ICANS. ^eOther neurotoxicities include AEs reported as CAR-T cell neurotoxicity that are not ICANS or associated symptoms. These included (but were not limited to) MNTs, cranial nerve palsy, and peripheral neuropathy. ^fAll cases involved cranial nerve VII; 2 cases involved a second cranial nerve (cranial nerves III and V; each n=1). ^gOngoing at CCO; last known date alive is October 17, 2022 (day 337 post infusion) in this patient. AE, adverse event; CAR, chimeric antigen receptor; CCO, clinical cut-off; cilta-cel, ciltacabtagene autoleucel; CRS, cytokine release syndrome; ICANS, immune effector cell–associated neurotoxicity; MNT, movement/neurocognitive treatment-emergent adverse event.

1. San-Miguel J, et al. N Engl J Med 2023;389:335-47, 2 Dhakal B, et al. Presented at American Society of Clinical Oncology (ASCO) Annual Meeting; June 2–6, 2023; Chicago, IL, USA.

Conclusions

- The PFS rate of 85% at 12 months post infusion in patients who received a single cilta-cel infusion as study treatment compares favorably with the median PFS of 6 months in real-world patients with lenalidomiderefractory MM after 1–3 prior LOT who were treated with SOC regimens including, but not limited to, DPd¹
- Cilta-cel rapidly led to treatment responses that deepened over time, resulting in a 99% ORR (≥CR, 86%) and a 72% MRD-negativity rate at the CCO
- The PFS rate at 12 months post infusion in patients who achieved MRD-negative ≥CR was 89%
- CARTITUDE-4 results, reinforced by longer-term outcomes in a similar patient population from CARTITUDE-2 Cohort A,² highlight the potential for prolonged disease control with cilta-cel as early as after first relapse

Rapid, deep responses and high 12-month PFS and OS rates of 85% and 92%, respectively, together with a manageable AE profile after a single cilta-cel infusion reinforce the potential of cilta-cel to be a new SOC for lenalidomide-refractory MM as early as after first relapse

AE, adverse event; cilta-cel, ciltacabtagene autoleucel; CCO, clinical cut-off; CR, complete response; DPd, daratumumab, pomalidomide, and dexamethasone; LOT, line of therapy; MM, multiple myeloma; MRD, minimal residual disease; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; SOC, standard of care. 1. Dhakal B, et al. Presented at International Myeloma Society (IMS) Annual Meeting; August 25–27, 2022; Los Angeles, CA, USA. 2. Hillengass J, et al. Presented at the 65th American Society of Hematology (ASH) Annual Meeting; December 9–12, 2023; San Diego, CA, USA.

Acknowledgments

- This study was funded by Janssen Research & Development, LLC, and Legend Biotech USA Inc.
- Medical Writing support was provided by Ashley Thoma, PharmD, of Eloquent Scientific Solutions, and funded by Janssen Global Services, LLC
- © American Society of Hematology (2023). Reused with permission. This abstract was accepted and previously presented at the ASH 2023 Annual Meeting

https://www.congresshub.com/Oncology/ DGHO2024/Cilta-cel/Einsele-Efficacy

This QR code is intended to provide scientific information for individual reference, and the information should not be altered or reproduced in any way.

-otional U-