Effect of Amivantamab Dose Interruptions on Efficacy and Safety of First-line Amivantamab Plus Lazertinib in EGFR-mutant Advanced NSCLC: Exploratory Analyses from the MARIPOSA study

Johannes Schnorbach, ¹ Maria del Rosario Garcia Campelo, ² Byoung Chul Cho, ³ Nicolas Girard, ⁴ Shun Lu, ⁵ Hiroshige Yoshioka, ⁶ Jong-Seok Lee, ⁷ Se-Hoon Lee, ⁸ Baogang Liu, ⁹ Mehmet Ali Sendur, ¹⁰ Benjamin Besse, ¹¹ Alexander I. Spira, ¹² Enriqueta Felip, ¹³ Andres Aguilar, ¹⁴ Joshua K Sabari, ¹⁵ Sanjay Popat, ¹⁶ Karen Xia, ¹⁷ Parthiv Mahadevia, ¹⁸ Seema Sethi, ¹⁷ Joshua M. Bauml, ¹⁷ Yuriy Ostapenko ¹⁹

¹Thorax Clinic Heidelberg, Germany; ²Hospital Universitario A Coruña, Coruña, Spain; ³Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; ⁴Institut du Thorax Curie-Montsouris, Paris, France and Paris Saclay University, UVSQ, Versailles, France; ⁵Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China; ⁶Department of Thoracic Oncology, Kansai Medical University Hospital, Osaka, Japan; ¹Seoul National University Bundang Hospital, Seongnam, Republic of Korea; ⁶Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; ⁶Harbin Medical University Cancer Hospital, Harbin, China; ¹Opepartment of Medical Oncology, Ankara Yildirim Beyazit University, Ankara City Hospital, Ankara, Turkey; ¹Cancer Medicine Department, Gustave Roussy, Villejuif, France & Paris-Saclay University, Orsay, France; ¹²Virginia Health Specialists, Fairfax, VA, USA; ¹³Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology, Barcelona, Spain; ¹⁴Hospital Universitario Quiron-Dexeus, Barcelona, Spain; ¹⁵Langone Health at NYU School of Medicine, New York, NY, USA; ¹⁶The Royal Marsden NHS Trust, London, UK; ¹¬Janssen Research & Development, Spring House, PA, USA; ¹³Janssen Research & Development, Raritan, NJ, USA; ¹९National Cancer Institute Ukraine, Kyiv, Ukraine

Conclusions

Among pts receiving ami+laz, early dose interruptions of ami per protocol guidance did not adversely impact the efficacy of the combination. Ami+laz is a new first-line standard of care for pts with EGFR-mutant advanced NSCLC.

Please scan QR code

https://www.congresshub.com/oncology/ DGHO2024#product-amivantamab

Poster

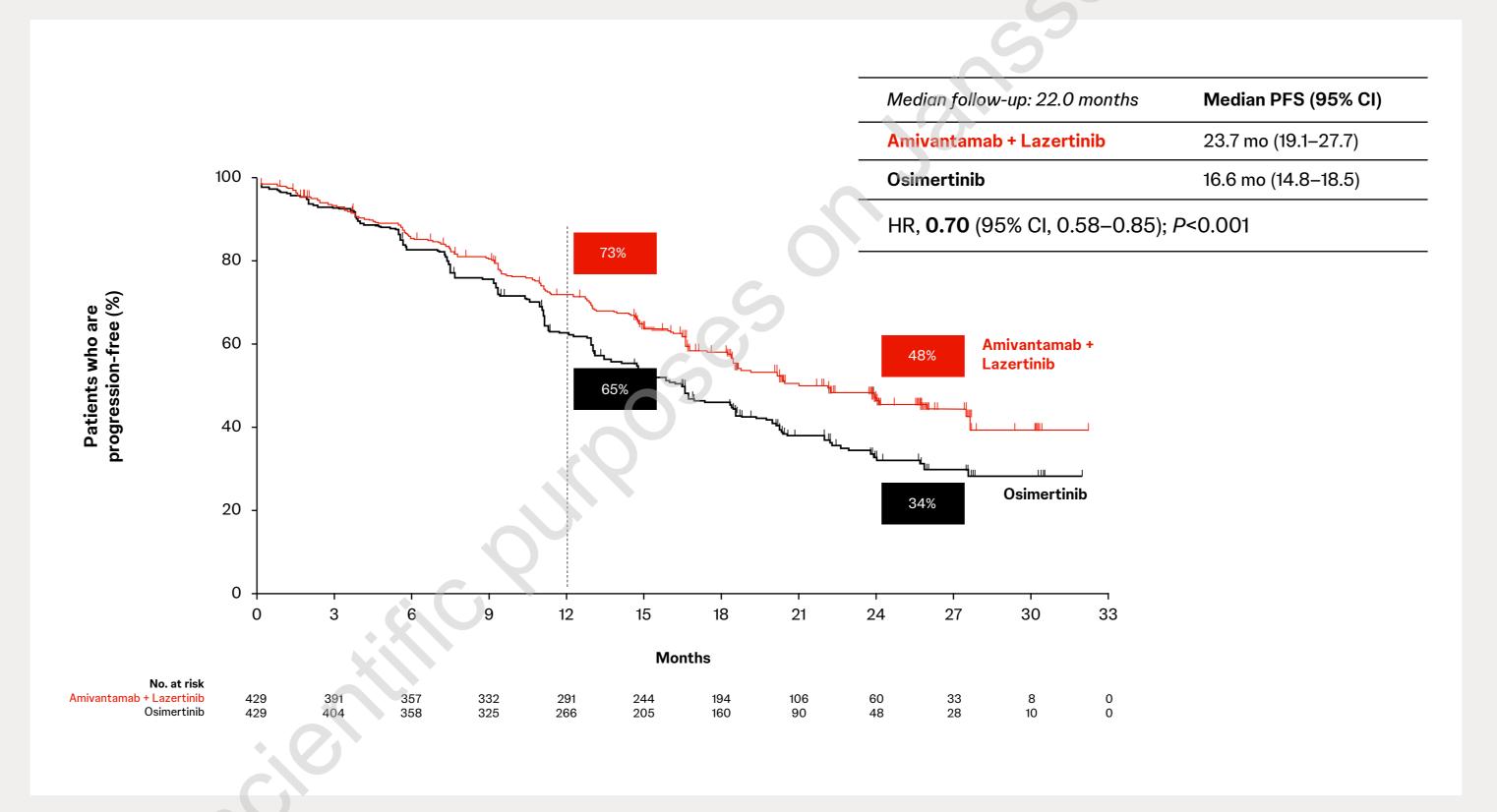
Copies of this poster obtained through QR code are for personal use only and may not be reproduced without permission from WCLC or the authors of this poster

Acknowledgments

- Patients who participated in the study and their families and caregivers
- Physicians and nurses who cared for patients and staff members who supported this clinical trial
- Staff members at the study sites and involved in data collection/analyses
 Medical writing assistance was provided by Lumanity Communications Inc.,
- and funded by Janssen Global Services, LLC

Disclosures

Johannes Schnorbach: Nothing to declare


Background

Amivantamab (ami) is an EGFR-MET bispecific antibody with immune cell-directing activity. Lazertinib (laz) is a CNS-penetrant 3rd-generation EGFR TKI. As first-line treatment, ami+laz demonstrated superior progression-free survival (PFS) vs osimertinib in patients (pts) with EGFR-mutant advanced non-small cell lung cancer (NSCLC; Cho Ann Oncol 2023). Protocol guidance in the MARIPOSA study (NCT04487080) recommended consideration of ami dose interruption in the case of related grade ≥2 toxicity. For pts treated with first-line ami+laz, the majority of key adverse events occurred in the first 4 months (mo; Spira JTO 2023). We studied the efficacy and safety in ami+laz pts that had ami dose interruptions in the first 4 months.

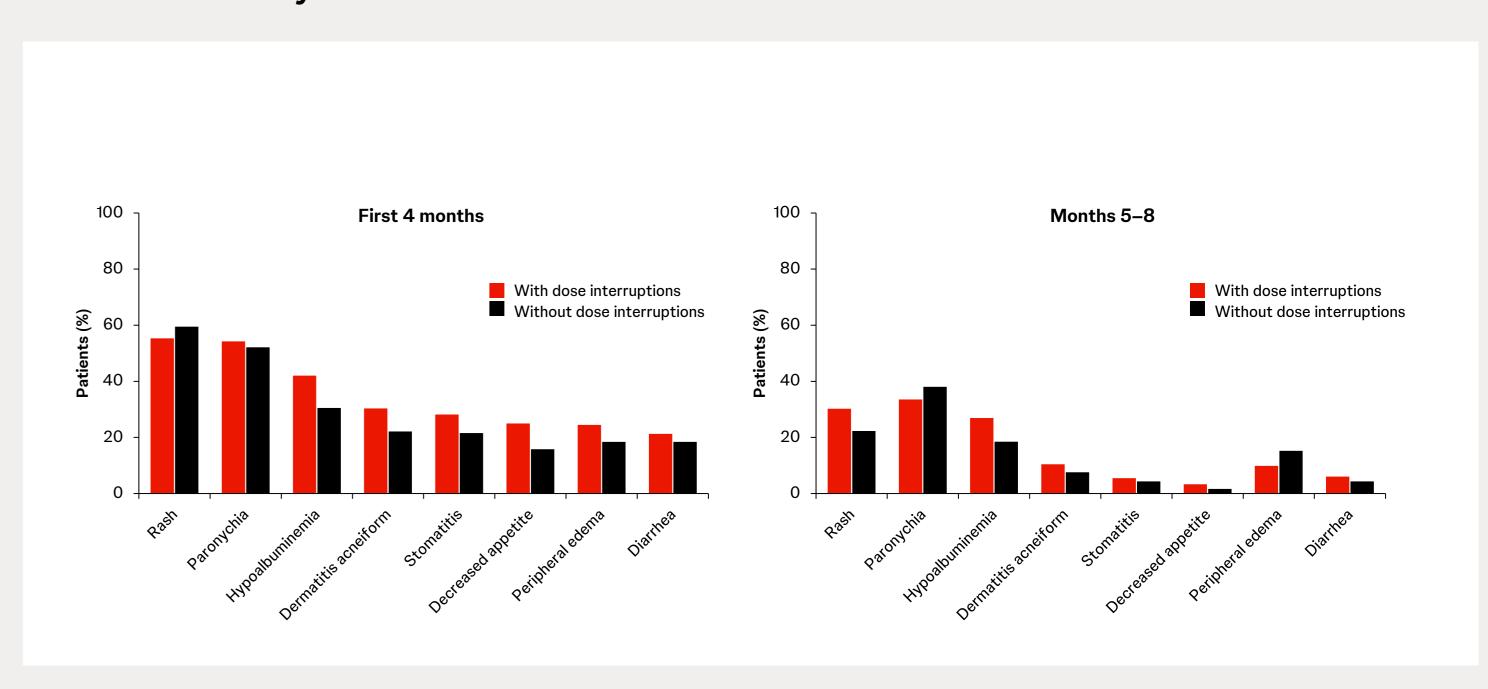
Results

- Among the 429 pts who were randomized to the ami+laz arm, 421 received at least one dose. At a median follow-up of 22.0 months, 49% (206/421) had ami dose interruptions in the first 4 months of treatment.
- Among pts that required ami dose interruptions in the first 4 months, median PFS was 23.9 mo (95% CI, 18.5–NE). Objective response rate (ORR) and median duration of response (DoR) for pts with dose interruptions of ami in the first 4 months and all pts randomized to the ami+laz arm are shown in the Table.

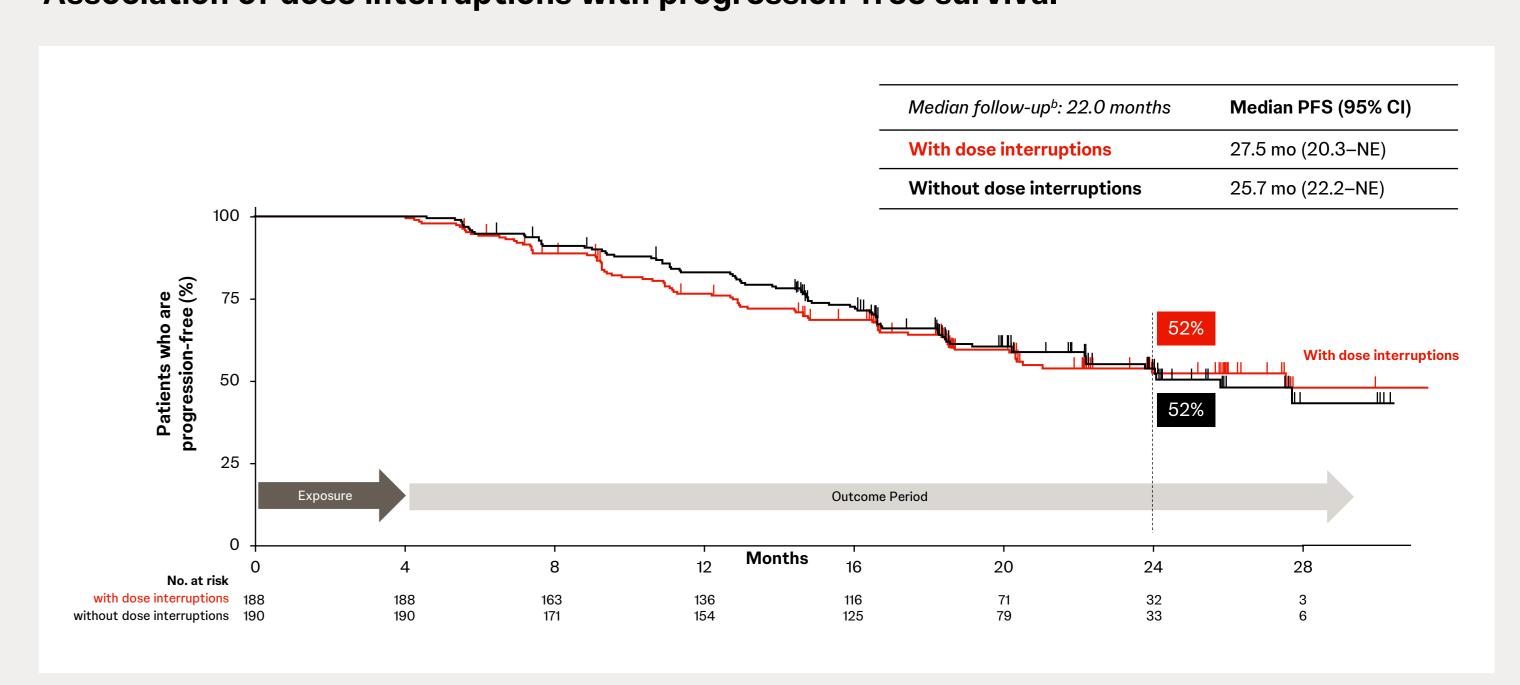
Primary Endpoint: Progression-free Survival by BICR

Results: Descriptive analysis of amivantamab dose interruptions

Endpoint, median (95% CI)	Dose interruptions in the first 4 months (n=206)	No interruptions in the first 4 months (n=215)	All randomized patients (n=429)
PFS	23.9 mo (18.5-NE)	23.7 mo (18.4-NE)	23.7 mo (19.1–27.7)
ORR	87% (81–91)	89% (84–93)	86% (83–89)
DoR among confirmed responders	25.8 mo (16.7-NE)	26.1 mo (20.1–NE)	25.8 mo (20.1–NE)


Methods

• This analysis included all pts who were randomized to the ami+laz arm in MARIPOSA (efficacy set: n=429, safety set: n=421). Study protocol dictated ami to be dose modified before laz. Dose interruptions were defined as any interruptions of ami due to any cause.


Demographic and baseline characteristics

Characteristic, n (%)	Dose interruptions in the first 4 months (n=188)	No interruptions in the first 4 months (n=190)
Median age (range), years	63 (35–86)	62 (24–88)
Female	120 (64)	120 (63)
Race		
Asian	108 (57)	114 (60)
Non-Asian	78 (41)	76 (40)
Unknown	2 (1)	0
ECOG PS 1	122 (65)	127 (67)
History of smoking	61 (32)	54 (28)
History of brain metastases	80 (43)	71 (37)
EGFR mutation type		
Ex19del	101 (54)	124 (65)
L858R	87 (46)	66 (35)

Prevalence of key AEs over time

Association of dose interruptions with progression-free survival

