

### Daratumumab (DARA) + Bortezomib/Lenalidomide/ Dexamethasone (VRd) in Transplant-eligible Patients With Newly Diagnosed Multiple Myeloma (NDMM): Analysis of Minimal Residual Disease (MRD) in the PERSEUS Trial\*

\*ClinicalTrials.gov Identifier: NCT03710603; sponsored by EMN in collaboration with Janssen Research & Development, LLC.

Hermann Einsele<sup>1</sup>, Paula Rodriguez-Otero<sup>2</sup>, Philippe Moreau<sup>3</sup>, Meletios A. Dimopoulos<sup>4</sup>, Meral Beksac<sup>5</sup>, Aurore Perrot<sup>6</sup>, Annemiek Broijl<sup>7</sup>, Francesca Gay<sup>8</sup>, Roberto Mina<sup>8</sup>, Niels W.C.J. van de Donk<sup>9</sup>, Fredrik Schjesvold<sup>10</sup>, Michel Delforge<sup>11</sup>, Andrew Spencer<sup>12</sup>, Sarah Lonergan<sup>7</sup>, Diego Vieyra<sup>13</sup>, Anna Sitthi-Amorn<sup>13</sup>, Robin Carson<sup>13</sup>, Joan Bladé<sup>14</sup>, Mario Boccadoro<sup>15</sup>, Pieter Sonneveld<sup>7</sup>

<sup>1</sup>Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany; <sup>2</sup>Department of Hematology, Cancer Center Clínica Universidad de Navarra, Pamplona, Navarra, Spain; <sup>3</sup>Hematology Department, University Hospital Hôtel-Dieu, Nantes, France; <sup>4</sup>National and Kapodistrian University of Athens, Athens, Greece; <sup>5</sup>Ankara University, Ankara, Turkey; <sup>6</sup>CHU de Toulouse, IUCT-O, Université de Toulouse, UPS, Service d'Hématologie, Toulouse, France; <sup>7</sup>Erasmus MC Cancer Institute, Rotterdam, The Netherlands; <sup>8</sup>Division of Hematology 1, AOU Città della Salute e della Scienza di Torino, and Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; <sup>9</sup>Department of Hematology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; <sup>10</sup>Oslo Myeloma Center, Department of Hematology, and KG Jebsen Center for B-cell Malignancies, University of Oslo, Oslo, Norway; <sup>11</sup>University of Leuven, Leuven, Belgium; <sup>12</sup>Malignant Haematology and Stem Cell Transplantation Service, Alfred Health-Monash University, Melbourne, Australia; <sup>13</sup>Janssen Research & Development, LLC, Spring House, PA, USA; <sup>14</sup>Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; and GEM/PETHEMA; <sup>15</sup>Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy

Presented by H Einsele at the Annual Meeting of the German, Austrian and Swiss Associations of Hematology and Medical Oncology (DGHO); October 11–14, 2024; Basel, Switzerland

https://www.congresshub.com/Oncology/ DGHO2024/Daratumumab/Einsele-Dara

This QR code is intended to provide scientific information for individual reference, and the information should not be altered or reproduced in any way.



### **Disclosures of Conflicts of Interest**

HE has served in a consulting/advisory role for Amgen, BMS, Celgene, GSK, Janssen, and Sanofi; has received honoraria from Amgen, BMS, Celgene, GSK, Janssen, and Sanofi; and has received research funding from Amgen, BMS, Celgene, GSK, Janssen, and Sanofi. PRO has received honoraria from Amgen, BMS, Celgene, GSK, Janssen, Oncopeptides, Regeneron, and Sanofi. PM has served in a consulting/advisory role for AbbVie, Amgen, Celgene, GSK, Janssen, Oncopeptides, Sanofi; and has received honoraria from AbbVie, Amgen, Celgene, GSK, Janssen, Oncopeptides, and Sanofi. MAD has served in a consulting/advisory role for Amgen, Beigene, BMS, Janssen-Cilag, Takeda; and has received honoraria from Amgen, Beigene, BMS, Janssen-Cilag, Takeda. MB has served in a consulting/advisory role for Amgen, Celgene, Janssen-Cilag, Oncopeptides, Sanofi Pasteur, Takeda; and has received honoraria from Amgen, Celgene, Janssen-Cilag, Oncopeptides, Sanofi Pasteur, and Takeda. AP has served in a consulting/advisory role for AbbVie, Amgen, BMS, Janssen, Pfizer, Sanofi, and Takeda; and has received honoraria from AbbVie, Amgen, BMS, Janssen, Pfizer, Sanofi, and Takeda. AB has served in a consulting/advisory role for Amgen, BMS, Janssen, and Sanofi; and has received honoraria from Amgen, BMS, Janssen, and Sanofi. FG has served in a consulting/advisory role for AbbVie, Adaptive Biotechnologies, Amgen, Bluebird Bio, BMS, Celgene, GSK, Janssen, Oncopeptides, Roche, Sanofi, and Takeda; and has received honoraria from AbbVie, Adaptive Biotechnologies, Amgen, Bluebird Bio, BMS, Celgene, GSK, Janssen, Oncopeptides, Roche, Sanofi, and Takeda. RM has served in a consulting/advisory role for Amgen, BMS, Celgene, Janssen, Sanofi, Takeda; and has received honoraria from Amgen, BMS, Celgene, Janssen, Sanofi, Takeda. NWCJvdD has served in a consulting/advisory role for AbbVie, Adaptive Biotechnologies, Amgen, Bayer, BMS, Celgene, Janssen, Kite Pharma, Merck, Novartis, Pfizer, Roche, Servier, and Takeda; and has received research funding from Amgen, BMS, Celgene, Cellectis, Janssen, and Novartis. FS has served in a consulting/advisory role for, received honoraria from, and received research funding from AbbVie, Amgen, BMS, Celgene, Daiichi Sankyo, GSK, Janssen-Cilag, Novartis, Oncopeptides, Pfizer, Sanofi, SkylineDx, Takeda, and Targovax. MD has served in a consulting/advisory role for Amgen, BMS, GSK, Janssen, Sanofi, Stemline Therapeutics, and Takeda. AS has served in a consulting/advisory role for AbbVie, Amgen, BMS, Haemalogix, Janssen, Pfizer; is a member of the Board of Directors or advisory committee for Roche; and has received honoraria from AbbVie, Amgen, BMS, Haemalogix, Janssen, Pfizer, and Roche. SL has nothing to disclose. DV, ASA, and RC are employees/hold stock and other ownership interests in Janssen. JB has served in a consulting/advisory role for and received honoraria from Amgen, Celgene, Janssen, and Takeda. MB has served in a consulting/advisory role for GSK and Janssen; has received honoraria from AbbVie, Amgen, BMS, Celgene, GSK, Janssen, Novartis, and Sanofi; and has received research funding from Amgen, BMS, Celgene, Janssen, Mundipharma, Novartis, and Sanofi. PS has received honoraria from Amgen, BMS, Celgene, Janssen, Karyopharm, Pfizer, and Takeda; and has received research funding from Amgen, BMS, Celgene, Janssen, Karyopharma, SkylineDx, and Takeda.



### **PERSEUS: Introduction**

- In NDMM, MRD negativity has been associated with longer PFS and OS, and deeper responses (10<sup>-6</sup>) have been associated with superior PFS compared with MRD negativity at 10<sup>-5</sup> or 10<sup>-4</sup> sensitivity<sup>1,2</sup>
- An increasing number of patients are achieving OS of 10 years or longer. Current MRD testing at a sensitivity level of 10<sup>-6</sup> and sustained MRD at this level for over 5 years translates into very long survival and potentially a "cure" for patients with standard-risk features<sup>3-5</sup>
- In the primary analysis of PERSEUS, D-VRd induction/consolidation + D-R maintenance improved depth of response and PFS versus VRd induction/consolidation + R maintenance in transplant-eligible NDMM<sup>6</sup>
  - 64% of patients receiving D-R maintenance stopped DARA after ≥2 years due to achieving sustained MRD negativity (10<sup>-5</sup>)<sup>a</sup>
- Here, we report further results from PERSEUS on deepening of response and MRD negativity during maintenance therapy

<sup>a</sup>MRD-negativity rate was defined as the proportion of patients who achieved both MRD negativity and <sup>3</sup>CR in the ITT population.

MRD was assessed using bone marrow aspirates and evaluated via NGS (clonoSEQ assay, version 2.0; Adaptive Biotechnologies, Seattle, WA, USA).

CR, complete response; DARA, daratumumab; D-R, daratumumab plus lenalidomide; D-VRd, daratumumab plus bortezomib/lenalidomide/dexamethasone; ITT, intent to treat; MRD, minimal residual disease; NDMM, newly diagnosed multiple myeloma; NGS, next-generation sequencing OS, overall survival; PFS, progression-free survival; R, lenalidomide;

VRd, bortezomib/lenalidomide/dexamethasone.

1. Munshi NC, et al. *Blood Adv* 2020;4(23):5988-99. 2. Perrot A, et al. *Blood* 2018;132(23):2456-64. 3. International Myeloma Foundation. A deeper understanding of 'cure' in multiple myeloma. Accessed May 14, 2024. <a href="https://www.myeloma.org/blog/dr-duries/deeper-understanding-of-cure-in-myeloma">https://www.myeloma.org/blog/dr-duries/deeper-understanding-of-cure-in-myeloma</a>. 4. Engelhardt M, et al. *Haematologica* 2024;109(8):2420-35. 5. Rodriguez-Otero P, et al. *Cancer Treat Rev* 2021;100:102284. 6. Sonneveld P, et al. *N Engl J Med* 2024;390(4):301-13.



## **PERSEUS: Study Design**



<sup>a</sup>Stratified by ISS stage and cytogenetic risk. <sup>b</sup>DARA 1800 mg co-formulated with rHuPH20 (2000 U/mL; ENHANZE<sup>®</sup> drug delivery technology, Halozyme, Inc., San Diego, CA, USA). <sup>c</sup>Response and disease progression were assessed using a computerized algorithm based on IMWG response criteria. <sup>d</sup>MRD was assessed using the clonoSEQ assay (v.2.0; Adaptive Biotechnologies, Seattle, WA, USA) in patients with ≥VGPR post-consolidation and at the time of suspected ≥CR. Overall, the MRD-negativity rate was defined as the proportion of patients who achieved both MRD negativity (10<sup>-5</sup> threshold) and ≥CR at any time.

CR, complete response; DARA, daratumumab; d, dexamethasone; D-R, daratumumab plus lenalidomide; D-VRd, daratumumab plus bortezomib/lenalidomide/dexamethasone; ECOG PS, Eastern Cooperative Oncology Group performance status; IMWG, International Myeloma Working Group; ISS, International Staging System; IV, intravenous; MRD, minimal residual disease; NDMM, newly diagnosed multiple myeloma; OS; overall survival; PD, progressive disease; PFS, progression-free survival; PO, oral; Q2W, every 2 weeks; Q4W, every 4 weeks; Q4W, eve



## **PERSEUS: Study Design**



MRD-negativity rate was defined as the proportion of patients who achieved both MRD negativity and ≥CR in the ITT population. Patients who were not evaluable or had indeterminate results were considered MRD positive.

<sup>a</sup>Stratified by ISS stage and cytogenetic risk. <sup>b</sup>DARA 1800 mg co-formulated with rHuPH20 (2000 U/mL; ENHANZE<sup>®</sup> drug delivery technology, Halozyme, Inc., San Diego, CA, USA). <sup>c</sup>Response and disease progression were assessed using a computerized algorithm based on IMWG response criteria. <sup>d</sup>MRD was assessed using the clonoSEQ assay (v.2.0; Adaptive Biotechnologies, Seattle, WA, USA) in patients with ≥VGPR post-consolidation and at the time of suspected ≥CR. Overall, the MRD-negativity rate was defined as the proportion of patients who achieved both MRD negativity (10<sup>-5</sup> threshold) and ≥CR at any time.

CR, complete response; DARA, daratumumab; d, dexamethasone; D-R, daratumumab plus lenalidomide; D-VRd, daratumumab plus bortezomib/lenalidomide/dexamethasone; ECOG PS, Eastern Cooperative Oncology Group performance status; IMWG, International Myeloma Working Group; ISS, International Staging System; ITT, intent to treat; IV, intravenous; MRD, minimal residual disease; NDMM, newly diagnosed multiple myeloma; OS; overall survival; PD, progressive disease; PFS, progression-free survival; PO, oral; Q2W, every 2 weeks; Q4W, every 4 weeks; QW, weekly; R, lenalidomide; rHuPH20, recombinant human hyaluronidase PH20; SC, subcutaneous; V, bortezomib; VGPR, very good partial response; VRd, bortezomib/lenalidomide/dexamethasone.



## **PERSEUS: Endpoints and Statistical Analyses**

#### Endpoints

- The primary endpoint was PFS
- Overall ≥CR rate and overall MRD-negativity (10<sup>-5</sup>) rate were key secondary endpoints
- MRD endpoint definitions
  - MRD negativity was defined as the patients who achieved both MRD negativity and ≥CR response
    - · Patients who were not evaluable or had indeterminate results were considered MRD positive
  - Overall MRD-negativity rate was defined as the proportion of patients in the ITT population who achieved both MRD negativity and ≥CR
  - Sustained MRD-negativity (≥12 months) rate was defined as the proportion of patients in the ITT population with 2 consecutive MRD-negative results ≥12 months apart, without any MRD-positive results in between

#### Statistical analyses

- Odds ratios and P values for the difference between the 2 treatment groups were calculated for overall MRD-negativity rate and sustained MRD-negativity rate
  - Stratified Mantel–Haenszel odds ratios and stratified P values were calculated for the ITT population
  - Unstratified Mantel–Haenszel odds ratios and unstratified P values were calculated for subgroup analyses
  - Stratification factors were ISS disease stage (I, II, vs III) and cytogenetic risk (high risk vs standard risk or indeterminate)
  - P values were based on the Cochran–Mantel–Haenszel chi-square test





### PERSEUS Primary Analysis: D-VRd Followed by D-R Maintenance Significantly Improved PFS and Depth of Response Versus VRd Followed by R Maintenance<sup>1</sup>



#### 58% reduction in the risk of progression or death in patients receiving D-VRd

#### Deep and durable MRD negativity achieved with D-VRd

<sup>a</sup>MRD-negativity rate was defined as the proportion of patients who achieved both MRD negativity and ≥CR. MRD was assessed using bone marrow aspirates and evaluated via NGS (clonoSEQ assay, version 2.0; Adaptive Biotechnologies, Seattle, WA, USA). <sup>b</sup>P values were calculated with the use of the stratified Cochran–Manuel–Haenszel chi-square test. <sup>c</sup>P value was calculated with the use of Fisher's exact test.

CI, confidence interval; D-R, daratumumab plus lenalidomide; D-VRd, daratumumab plus bortezomib/lenalidomide/dexamethasone; HR, hazard ratio; MRD; minimal residual disease; NGS, next-generation sequencing; PFS, progression-free survival; R, lenalidomide; VRd, bortezomib/lenalidomide/dexamethasone. 1. Sonneveld P, et al. *N Engl J Med* 2024;390(4):301-13.



### **PERSEUS: Responses Over Time (ITT)**



Responses deepened to a greater extent with D-VRd + D-R versus VRd + R

*P* values were calculated using the stratified Cochran–Mantel–Haenszel chi-square test. <sup>a</sup>P = 0.6680. <sup>b</sup>P = 0.1774. <sup>c</sup>P = 0.0078. <sup>d</sup>P < 0.0001.

ASCT, autologous stem cell transplant; CR, complete response; D-R, daratumumab plus lenalidomide; D-VRd, daratumumab plus bortezomib/lenalidomide/dexamethasone; ITT, intent to treat; PR, partial response; R, lenalidomide; sCR, stringent complete response; SD/PD/NE, stable disease/progressive disease/not evaluable; VRd, bortezomib/lenalidomide/dexamethasone.





## **PERSEUS: MRD Negativity Rates 10<sup>-5</sup> and 10<sup>-6</sup> (ITT)**



D-VRd + D-R doubled the rates of deeper MRD negativity at 10<sup>-6</sup> versus VRd + R
 MRD negativity at 10<sup>-6</sup> increased by approximately 30% during maintenance with D-R

MRD-negativity rate was defined as the proportion of patients who achieved both MRD negativity and ≥CR in the ITT population. Patients who were not evaluable or had indeterminate results were considered MRD positive. *P* values were calculated using the stratified Cochran–Mantel–Haenszel chi-square test. *P* <0.0001 for all comparisons of D-VRd versus VRd. CR, complete response; D-R, daratumumab plus lenalidomide; D-VRd, daratumumab plus bortezomib/lenalidomide/dexamethasone; ITT, intent to treat; MRD; minimal residual disease; R, lenalidomide; VRd, bortezomib/lenalidomide/dexamethasone.



### PERSEUS: MRD-negativity Rates in Prespecified Subgroups (ITT)

#### **Overall MRD negativity (10<sup>-5</sup>)**

| Subgroup         | VRd<br>n/N (%) | D-VRd<br>n/N (%) | Odds ratio<br>(95% Cl)                  |                                       | Subgroup          | VRd<br>n/N (%)   | D-VRd<br>n/N (%) | Odds ratio<br>(95% Cl) |                                       |          |                     |
|------------------|----------------|------------------|-----------------------------------------|---------------------------------------|-------------------|------------------|------------------|------------------------|---------------------------------------|----------|---------------------|
| Sex              |                |                  | 1                                       |                                       |                   | Sex 🖉            | ¢٢               |                        | 1                                     |          |                     |
| Male             | 94/205 (45.9)  | 150/211 (71.1)   | !                                       | ⊢●┥                                   | 2.90 (1.94-4.35)  | Male             | 62/205 (30.2)    | 132/211 (62.6)         |                                       |          | 3.85 (2.56-5.80)    |
| Female           | 74/149 (49.7)  | 117/144 (81.3)   |                                         | ⊢●┤                                   | 4.39 (2.59-7.44)  | Female           | 52/149 (34.9)    | 99/144 (68.8)          | ; F                                   |          | 4.10 (2.52-6.68)    |
| Age              |                |                  |                                         |                                       |                   | Age              |                  |                        |                                       |          |                     |
| <65 years        | 125/267 (46.8) | 204/261 (78.2)   |                                         | ⊢●┥                                   | 4.07 (2.78-5.94)  | <65 years        | 83/267 (31.1)    | 177/261 (67.8)         |                                       | H        | 4.67 (3.24-6.74)    |
| ≥65 years        | 43/87 (49.4)   | 63/94 (67.0)     | 1                                       | ⊢●−                                   | 2.08 (1.14-3.79)  | ≥65 years        | 31/87 (35.6)     | 54/94 (57.4)           |                                       |          | 2.44 (1.34-4.44)    |
| Race             |                |                  | i                                       |                                       |                   | Race             |                  |                        | 1                                     |          |                     |
| White            | 150/323 (46.4) | 251/330 (76.1)   | 1                                       | HeH                                   | 3.66 (2.62-5.12)  | White            | 106/323 (32.8)   | 218/330 (66.1)         |                                       | ⊢●┥      | 3.98 (2.88-5.52)    |
| Other            | 18/31 (58.1)   | 16/25 (64.0)     | i                                       | •l                                    | 1.28 (0.43-3.80)  | Other            | 8/31 (25.8)      | 13/25 (52.0)           | → →                                   | •        | 3.11 (1.01-9.58)    |
| ISS stage        |                |                  |                                         |                                       |                   | ISS stage        |                  |                        | 1                                     |          |                     |
| 1                | 88/178 (49.4)  | 146/186 (78.5)   | i                                       | ⊢●┥                                   | 3.73 (2.36-5.89)  | 0                | 59/178 (33.1)    | 126/186 (67.7)         | i I                                   |          | 4.24 (2.73-6.56)    |
| II               | 58/125 (46.4)  | 84/114 (73.7)    | 1                                       | ⊢●┥                                   | 3.23 (1.87-5.58)  | 69 II            | 41/125 (32.8)    | 71/114 (62.3)          |                                       | <b>●</b> | 3.38 (1.99-5.76)    |
| 111              | 21/50 (42.0)   | 37/55 (67.3)     | i i                                     |                                       | 2.84 (1.28-6.29)  | iii iii          | 14/50 (28.0)     | 34/55 (61.8)           | i H                                   | •        | 4.16 (1.83-9.48)    |
| Type of MM       |                | · · · · ·        |                                         |                                       |                   | Type of MM       |                  |                        |                                       |          |                     |
| lgG              | 89/185 (48.1)  | 153/204 (75.0)   | !                                       | ⊢●┥                                   | 3.24 (2.11-4.97)  | lgG              | 56/185 (30.3)    | 134/204 (65.7)         | 1                                     |          | 4.41 (2.88-6.76)    |
| Non-IgG          | 50/96 (52.1)   | 63/78 (80.8)     | 1                                       | ⊢●−                                   | 3.86 (1.94-7.71)  | Non-IgG          | 36/96 (37.5)     | 53/78 (67.9)           | ¦ ⊢                                   | <b>←</b> | 3.53 (1.88-6.63)    |
| Cytogenetic risk |                |                  | !                                       |                                       | a G <sup>K</sup>  | Cytogenetic risk |                  |                        | 1                                     |          |                     |
| Standard risk    | 128/266 (48.1) | 204/264 (77.3)   | i i                                     | Hen                                   | 3.67 (2.52-5.33)  | Standard risk    | 88/266 (33.1)    | 177/264 (67.0)         |                                       | ⊢●┥      | 4.12 (2.87-5.91)    |
| High risk        | 37/78 (47.4)   | 52/76 (68.4)     | 1                                       | ⊢●-1                                  | 2.40 (1.24-4.63)  | High risk        | 24/78 (30.8)     | 44/76 (57.9)           | i Ha                                  |          | 3.09 (1.60-6.00)    |
| Indeterminate    | 3/10 (30.0)    | 11/15 (73.3)     |                                         | • • • • • • • • • • • • • • • • • • • | 6.42 (1.09-37.73) | Indeterminate    | 2/10 (20.0)      | 10/15 (66.7)           | ¦⊢—                                   |          | ➔ 8.00 (1.21-52.69) |
| ECOG PS score    |                |                  |                                         | 5                                     |                   | ECOG PS score    |                  |                        |                                       |          |                     |
| 0                | 101/230 (43.9) | 168/221 (76.0)   | i                                       | H <b>e</b> €                          | 4.05 (2.70-6.06)  | 0                | 75/230 (32.6)    | 148/221 (67.0)         |                                       |          | 4.19 (2.83-6.21)    |
| ≥1               | 67/124 (54.0)  | 99/134 (73.9)    |                                         | Here a                                | 2.41 (1.43-4.06)  | ≥1               | 39/124 (31.5)    | 83/134 (61.9)          | i F                                   | •        | 3.55 (2.12-5.94)    |
|                  |                |                  | 01 1                                    | 10                                    |                   |                  |                  |                        | 0.1 1                                 | 1        | T<br>IO             |
|                  |                |                  | · → · · · · · · · · · · · · · · · · · · | <b>&gt;</b>                           |                   |                  |                  |                        | · · · · · · · · · · · · · · · · · · · |          | →                   |
|                  |                |                  | VRd better                              | D-VRd better                          |                   |                  |                  |                        | VRd better D-VR                       | d hetter |                     |

#### MRD-negativity rates were improved with D-VRd + D-R versus VRd + R across subgroups

MRD-negativity rate was defined as the proportion of patients who achieved both MRD negativity and ≥CR in the ITT population. Patients who were not evaluable or had indeterminate results were considered MRD positive. The subgroup analysis for type of MM was performed on data from patients who had measurable disease in serum. Cytogenetic risk was assessed by fluorescence in situ hybridization; high risk was defined as the presence of del(17p), t(4;14), and/or t(14;16). CR, complete response; D-R, daratumumab plus lenalidomide; D-VRd, daratumumab plus bortezomib/lenalidomide/dexamethasone; ECOG PS, Eastern Cooperative Oncology Group performance status; IgG, immunoglobulin G; ISS, International Staging System; ITT, intent to treat; MM, multiple myeloma; MRD; minimal residual disease; R, lenalidomide; VRd, bortezomib/lenalidomide/dexamethasone.



Presented by H Einsele at the Annual Meeting of the German, Austrian and Swiss Associations of Hematology and Medical Oncology (DGHO); October 11–14, 2024; Basel, Switzerland

#### Overall MRD negativity (10<sup>-6</sup>)

### PERSEUS: Sustained MRD-negativity Rates (10<sup>-5</sup> and 10<sup>-6</sup>; ITT)



Rates of sustained MRD negativity at 10<sup>-6</sup> were 2.5-fold higher for D-VRd + D-R versus VRd + R
 More than 40% of patients had sustained MRD negativity at 10<sup>-6</sup> for ≥18 months with D-VRd + D-R

MRD-negativity rate was defined as the proportion of patients who achieved both MRD negativity and ≥CR in the ITT population. Patients who were not evaluable or had indeterminate results were considered MRD positive. *P* values were calculated using the stratified Cochran–Mantel–Haenszel chi-square test. *P* <0.0001 for all comparisons of D-VRd versus VRd.

CR, complete response; D-R, daratumumab plus lenalidomide; D-VRd, daratumumab plus bortezomib/lenalidomide/dexamethasone; ITT, intent to treat; MRD; minimal residual disease; R, lenalidomide; VRd, bortezomib/lenalidomide/dexamethasone.

### PERSEUS: Sustained MRD Negativity by Prespecified Subgroups (ITT)

| Susta            | ined MRD r     | negativity       | (10 <sup>-5</sup> ) ≥12 mon | Sustained MRD negativity (10 <sup>–6</sup> ) ≥12 months |                  |                                       |                            |                        |              |                     |
|------------------|----------------|------------------|-----------------------------|---------------------------------------------------------|------------------|---------------------------------------|----------------------------|------------------------|--------------|---------------------|
| Subgroup         | VRd<br>n/N (%) | D-VRd<br>n/N (%) | Odds (<br>95%)              | ratio<br>CI)                                            | Subgroup         | VRd<br>n/N (%)                        | D-VRd<br>n/N (%)           | Odds ratio<br>(95% Cl) |              | ratio<br>CI)        |
| Sex              |                |                  | 1                           |                                                         | Sex              | 0.                                    |                            | 1                      |              |                     |
| Male             | 62/205 (30.2)  | 131/211 (62.1)   | ¦ ⊢●-I                      | 3.78 (2.51-5.68)                                        | Male             | 37/205 (18.0)                         | 96/211 (45.5)              |                        | ⊢●-1         | 3.79 (2.42-5.93)    |
| Female           | 43/149 (28.9)  | 99/144 (68.8)    | ; ⊢●-                       | 5.42 (3.29-8.94)                                        | Female           | 29/149 (19.5)                         | 72/144 (50.0)              | i                      | ⊢●⊣          | 4.14 (2.46-6.97)    |
| Age              |                |                  |                             |                                                         | Age              |                                       |                            | 1                      |              |                     |
| <65 years        | 78/267 (29.2)  | 180/261 (69.0)   | i ⊢●-1                      | 5.38 (3.71-7.81)                                        | <65 years        | 47/267 (17.6)                         | 131/261 (50.2)             | i                      | ⊢●┥          | 4.72 (3.17-7.02)    |
| ≥65 years        | 27/87 (31.0)   | 50/94 (53.2)     | ¦  ●                        | 2.53 (1.37-4.64)                                        | ≥65 years        | 19/87 (21.8)                          | 37/94 (39.4)               | 1                      | ⊢•−1         | 2.32 (1.21-4.48)    |
| Race             |                |                  | i                           |                                                         | Race             |                                       |                            | i                      |              |                     |
| White            | 93/323 (28.8)  | 216/330 (65.5)   | ¦ ⊦●-1                      | 4.69 (3.37-6.52)                                        | SWhite           | 63/323 (19.5)                         | 158/330 (47.9)             | 1                      | ⊢●┥          | 3.79 (2.67-5.38)    |
| Other            | 12/31 (38.7)   | 14/25 (56.0)     | ⊢∔●                         | 2.02 (0.69-5.88)                                        | Other            | 3/31 (9.7)                            | 10/25 (40.0)               | i                      |              | 6.22 (1.48-26.12)   |
| ISS stage        |                |                  | 1                           |                                                         | ISS stage        |                                       |                            | 1                      |              |                     |
|                  | 58/178 (32.6)  | 128/186 (68.8)   | ; ⊢●-1                      | 4.57 (2.94-7.10)                                        |                  | 36/178 (20.2)                         | 93/186 (50.0)              | i                      | ⊢●┥          | 3.94 (2.48-6.28)    |
| II               | 35/125 (28.0)  | 69/114 (60.5)    | ¦ ⊢●-1                      | 3.94 (2.29-6.78)                                        |                  | 23/125 (18.4)                         | 47/114 (41.2)              | 1                      | ⊢•−1         | 3.11 (1.73-5.59)    |
| III              | 12/50 (24.0)   | 33/55 (60.0)     | i ⊢●→                       | 4.75 (2.04-11.05)                                       |                  | 7/50 (14.0)                           | 28/55 (50.9)               | i                      | ⊢→           | 6.37 (2.44-16.60)   |
| Type of MM       | · · · · ·      | . ,              |                             | S                                                       | Type of MM       | , , , , , , , , , , , , , , , , , , , | . ,                        | 1                      |              | · · · ·             |
| lgG              | 50/185 (27.0)  | 136/204 (66.7)   | i <b>⊢</b> ●-1              | 5.40 (3.49-8.35)                                        | lgG              | 31/185 (16.8)                         | 96/204 (47.1)              | i                      | ⊢●           | 4.42 (2.75-7.09)    |
| Non-laG          | 31/96 (32.3)   | 52/78 (66.7)     | ¦ ⊢●                        | 4.19 (2.22-7.92)                                        | Non-IgG          | 18/96 (18.8)                          | 43/78 (55.1)               | 1                      | ⊢●→          | 5.32 (2.70-10.50    |
| Cvtogenetic risk |                | ( ),             | i                           | Ŭ,                                                      | Cytogenetic risk |                                       |                            | i                      | -            | ,                   |
| Standard risk    | 83/266 (31.2)  | 183/264 (69.3)   | ╎                           | 4.98 (3.45-7.20)                                        | Standard risk    | 54/266 (20.3)                         | 137/264 (51.9)             | 1                      | ⊢●┥          | 4.24 (2.88-6.22)    |
| High risk        | 20/78 (25.6)   | 37/76 (48.7)     | · ⊢_ <b>●</b>               | 2.75 (1.40-5.42)                                        | High risk        | 11/78 (14.1)                          | 23/76 (30.3)               | i                      |              | 2.64 (1.18-5.90)    |
| Indeterminate    | 2/10 (20.0)    | 10/15 (66.7)     | ↓<br>↓<br>↓                 | 8.00 (1.21-52.69)                                       | Indeterminate    | 1/10 (10.0)                           | 8/15 (53.3)                | 1                      |              | 10.29 (1.03-102.75) |
| ECOG PS score    |                | ( )              |                             |                                                         | ECOG PS score    |                                       | ( )                        | i                      |              | ,                   |
| 0                | 71/230 (30.9)  | 150/221 (67.9)   | <b>⊢</b> ●€)``              | 4.73 (3.18-7.04)                                        | 0                | 47/230 (20.4)                         | 106/221 (48.0)             |                        | ⊢●┥          | 3.59 (2.37-5.44)    |
| ≥1               | 34/124 (27.4)  | 80/134 (59.7)    | i to-i                      | 3.92 (2.32-6.62)                                        | ≥1               | 19/124 (15.3)                         | 62/134 (46.3) <sup>´</sup> |                        | ⊢●−1         | 4.76 (2.62-8.63)    |
|                  |                |                  | 0.1 1 10                    |                                                         |                  |                                       |                            | 0.1 1                  |              | )                   |
|                  |                |                  | VRd better D-VRd better     |                                                         |                  |                                       |                            | ✓ VRd better           | D-VRd better | •                   |

#### Sustained MRD-negativity rates were improved with D-VRd + D-R versus VRd + R across subgroups

MRD-negativity rate was defined as the proportion of patients who achieved both MRD negativity and ≥CR in the ITT population. Patients who were not evaluable or had indeterminate results were considered MRD positive. The subgroup analysis for type of MM was performed on data from patients who had measurable disease in serum. Cytogenetic risk was assessed by fluorescence in situ hybridization; high risk was defined as the presence of del(17p), t(4;14), and/or t(14;16). CR, complete response; D-R, daratumumab plus lenalidomide; D-VRd, daratumumab plus bortezomib/lenalidomide/dexamethasone; ECOG PS, Eastern Cooperative Oncology Group performance status; IgG, immunoglobulin G; ISS, International Staging System; ITT, intent to treat; MM, multiple myeloma; MRD; minimal residual disease; R, lenalidomide; VRd, bortezomib/lenalidomide/dexamethasone.



### PERSEUS: MRD Negativity in Patients With High-Risk MM (ITT)



Rates of MRD negativity at 10<sup>-6</sup> and sustained MRD negativity ≥12 months were approximately doubled with D-VRd versus VRd
 PFS was improved with D-VRd versus VRd in MRD-negative high-risk patients

MRD-negativity rate was defined as the proportion of patients who achieved both MRD negativity and ≥CR in the ITT population. Patients who were not evaluable or had indeterminate results were considered MRD positive. Cytogenetic risk was assessed by fluorescence in situ hybridization; high risk was defined as the presence of del(17p), t(4;14), and/or t(14;16).

CR, complete response; D-VRd, daratumumab plus bortezomib/lenalidomide/dexamethasone; HR, hazard ratio; ITT, intent to treat; MRD; minimal residual disease; PFS, progression-free survival; VRd, bortezomib/lenalidomide/dexamethasone.



### PERSEUS: MRD Conversion During Maintenance for Patients Remaining MRD Positive at the End of Consolidation



During maintenance, conversion to MRD negativity (10<sup>-6</sup>) was doubled, and conversion to sustained MRD negativity was tripled, with D-R versus R

MRD-negativity rate was defined as the proportion of patients who achieved both MRD negativity and ≥CR. *P* values were calculated using the unstratified Cochran–Mantel–Haenszel chi-square test. CR, complete response; D-R, daratumumab plus lenalidomide; D-VRd, daratumumab plus bortezomib/lenalidomide/dexamethasone; ITT, intent to treat; MRD; minimal residual disease; PFS, progression-free survival; R, lenalidomide; VRd, bortezomib/lenalidomide/dexamethasone.



## **PERSEUS: PFS by MRD Negativity Status (10<sup>-6</sup>; ITT)**



- MRD negativity at 10<sup>-6</sup> was associated with improved long-term outcomes
- Twice as many patients achieved MRD negativity at 10<sup>-6</sup> with D-VRd + D-R versus VRd + R
- Patients remaining MRD positive had improved PFS with D-R maintenance versus R alone

MRD-negativity rate was defined as the proportion of patients who achieved both MRD negativity and ≥CR in the ITT population. Patients who were not evaluable or had indeterminate results were considered MRD positive. CR, complete response; D-R, daratumumab plus lenalidomide; D-VRd, daratumumab plus bortezomib/lenalidomide/dexamethasone; ITT, intent to treat; MRD; minimal residual disease; PFS, progression-free survival; R, lenalidomide; VRd, bortezomib/lenalidomide/dexamethasone.



## **PERSEUS: Conclusions From Analysis of MRD**

- The potential for a cure in NDMM is predicated on reaching sustained MRD negativity at 10<sup>-6</sup>
- In the PERSEUS study, for D-VRd + D-R:
  - 47% of patients achieved sustained MRD negativity (10<sup>-6</sup>) for 12 months versus 19% with VRd + R
  - In high-risk patients: 58% of patients achieved MRD negativity (10<sup>-6</sup>) and 30% achieved sustained MRD negativity (10<sup>-6</sup>) versus 31% and 14%, respectively, with VRd + R

#### • During D-R maintenance:

- The rate of MRD negativity (10<sup>-6</sup>) increased by 30% versus 15% with R alone
- 31% of MRD-positive patients converted to sustained MRD negativity (10<sup>-6</sup>) versus 10% with R alone
- 64% of patients stopped DARA after achieving sustained MRD negativity (10<sup>-5</sup>)<sup>1</sup>

# These data further highlight the benefit of D-VRd and D-R maintenance as a new standard of care for transplant-eligible patients with NDMM

DARA, daratumumab; D-R, daratumumab plus lenalidomide; D-VRd, daratumumab plus bortezomib/lenalidomide/dexamethasone; MRD; minimal residual disease; NDMM, newly diagnosed multiple myeloma; R, lenalidomide; VRd, bortezomib/lenalidomide/dexamethasone. 1. Sonneveld P, et al. *N Engl J Med* 2024;390(4):301-13.



## **PERSEUS: Future Directions**

- PERSEUS evaluated the totality of a DARA-containing regimen, from induction through maintenance
  - CASSIOPEIA (double randomization) final analysis demonstrated that DARA maintenance post–D-VTd or VTd significantly improved PFS versus observation; the highest rates of MRD negativity were seen with D-VTd followed by DARA<sup>1</sup>
  - AURIGA is evaluating conversion from MRD positive to MRD negative with DARA + R versus R maintenance post-ASCT<sup>2</sup>
  - DRAMMATIC (SWOG) is evaluating DARA + R versus R maintenance post-ASCT, with data expected in 2028+<sup>3</sup>
- Longer follow-up for PFS and OS in PERSEUS will confirm if sustained MRD negativity at 10<sup>-6</sup> for ≥5 years translates to functional cure, and in what proportion of patients
  - Potential to evaluate patient subgroups or clinical responses associated with greatest benefit
- PERSEUS sets a new benchmark for depth of response and PFS in transplant-eligible NDMM and should be considered a standard comparator for future frontline studies of novel approaches with CAR-T and bispecific antibodies





## **PERSEUS: Acknowledgments**

- Patients who participated in this study and their families
- Staff members at the study sites
- Data and safety monitoring committee
- The European Myeloma Network (EMN) and Janssen
- The EMN acknowledges the valuable contributions and participation of the National Myeloma Study Groups of all participating countries in Europe and Australia
- This study was sponsored by the European Myeloma Network (EMN) in collaboration with Janssen Research & Development, LLC
- Medical writing and editorial support were provided by Lisa Shannon, PharmD, and Kimberly Carmony, PhD (Lumanity Communications Inc.), and were funded by Janssen Global Services, LLC.
- © 2024 American Society of Clinical Oncology, Inc. Reused with permission. This abstract was accepted and
  previously presented at the 2024 ASCO Annual Meeting. All rights reserved





https://www.congresshub.com/Oncology/ DGHO2024/Daratumumab/Einsele-Dara

This QR code is intended to provide scientific information for individual reference, and the information should not be altered or reproduced in any way.

