Subcutaneous Daratumumab (DARA) + Bortezomib, Cyclophosphamide, and Dexamethasone (VCd) in Patients With Newly Diagnosed Light-Chain (AL) Amyloidosis: Overall Survival and Final Major Organ Deterioration–Progression-free Survival Results from the Phase 3 ANDROMEDA Study

Efstathios Kastritis¹, Giovanni Palladini^{2,3}, Monique C Minnema⁴, Ashutosh D Wechalekar⁵, Arnaud Jaccard⁶, Hans C Lee⁷, Vaishali Sanchorawala⁸, Peter Mollee⁹, Jin Lu¹⁰, Stefan Schönland¹¹, Moshe E Gatt¹², Kenshi Suzuki¹³, Kihyun Kim¹⁴, M Teresa Cibeira¹⁵, Manisha Bhutani¹⁶, Meral Beksac¹⁷, Edward Libby¹⁸, Jason Valent¹⁹, Vania Hungria²⁰, Michael Rosenzweig²¹, Naresh Bumma²², Antoine Huart ²³, NamPhuong Tran²⁴, Jianping Wang²⁵, Yuping Chen²⁶, Sandra Y Vasey²⁷, Jordan M Schecter²⁵, Jessica Vermeulen²⁸, Raymond L Comenzo²⁹, Giampaolo Merlini^{2,3}

¹Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece; ²Department of Molecular Medicine, University of Pavia, Pavia, Italy; ³Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, Pavia, Italy; ⁴Department of Hematology, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands; ⁵University College London, Lok; ⁶Reference Center for AL Amyloidosis, Limoges, France; ⁷Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas ⁵MD Anderson Cancer Center, Houston, TX, USA; ⁶Amyloidosis Center, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA; ⁹Department of Haematology, Princess Alexandra Hospital and University of Queensland Medical School, Brisbane, Australia; ¹⁰Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Beijing, China; ¹¹Universitaetsklinikum Heidelberg Medizinische Klinik V, Heidelberg, Germany; ¹²Hadassah Medical Center, Jerusalem, Israel; ¹³Japanese Red Cross Medical Center, Shibuya, Tokyo, Japan; ¹⁴Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea; ¹⁵Amyloidosis and Myeloma Unit, Hospital Clinic of Barcelona, IDIBAPS, Barcelona, Spai; ¹⁶Department of Hematologic Oncology and Blood Disorders, Atrium Health Levine Cancer Institute, Wake Forest University School of Medicine, Charter, Cleveland Clinic, Cleveland, OH, USA; ²⁰Clinica São Germano, São Paulo, Brazil; ²¹Department of Hematology and Hematopoietic Cell Transplantation, Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, CA, USA; ²²Division of Hematology, Ohio State University Comprehensive Cancer Center, Columbus, OH, USA; ²⁴Janssen Research & Development, LLC, Raritan, NJ, USA; ²⁴Janssen Research & Development, LLC, Shangh

Presented by E Kastritis at the 66th American Society of Hematology (ASH) Annual Meeting & Exposition; December 7-10, 2024; San Diego, CA, USA

https://www.congresshub.com/ASH2024/ Oncology/Daratumumab/Kastritis

The QR code is intended to provide scientific information for individual reference, and the information should not be altered or reproduced in any way.

ANDROMEDA: Introduction

- Systemic AL amyloidosis is characterized by deposition of immunoglobulin light chains produced by clonal CD38⁺ plasma cells as insoluble amyloid fibrils in vital organs, which often leads to poor prognosis¹⁻⁴
 - 5-year survival rate reported as 48% overall and 35% for patients with cardiac involvement⁵
- Phase 3 ANDROMEDA study primary analysis (median follow-up: 11.4 months)⁶ showed the addition of subcutaneous daratumumab (DARA) to VCd (D-VCd) resulted in:
 - Significant increase in HemCR rate (53.3% vs 18.1%; P < 0.0001)
 - Prolonged major organ deterioration (MOD)-PFS (HR, 0.58; 95% CI, 0.36-0.93; P = 0.02)
- D-VCd is the first and only approved therapy for AL amyloidosis and is considered SoC for newly diagnosed patients⁷⁻⁹

Here we report results from the final analysis for MOD-PFS and OS of ANDROMEDA with a median follow-up of 5 years

AL, light-chain; VCd, bortezomib/cyclophosphamide/dexamethasone; HemCR, hematologic complete response; MOD-PFS, major organ deterioration-progression-free survival; HR, hazard ratio; CI, confidence interval; SoC, standard of care; OS, overall survival. MOD-PFS is a composite endpoint defined as end-stage cardiac disease (requiring cardiac transplant, left ventricular assist device, or intra-aortic balloon pump), end-stage renal disease (requiring hemodialysis or renal transplant), hematologic progression per consensus guidelines, or death. 1. Merlini G, et al. *Expert Rev Hematol.* 2014;7(1):143-156. 2. National Organization for Rare Disorders. Amyloidosis. Accessed October 22, 2024. https://rarediseases.org/rare-diseases/amyloidosis/#affectedpopulations. 3. Weiss BM, et al. *J Clin Oncol.* 2014;32(25):2699-2704. 4. Palladini G, et al. *J Clin Oncol.* 2012;30(36):4541-4549. 5. Staron A, et al. *Blood Cancer J.* 2021;11(8):139. 6. Kastritis E, et al. *N Eng J Med.* 2021;385(1):46-58. 7. DARZALEX FASPRO® (daratumumab and hyaluronidase-fihj) [package insert]: Janssen Biotech, Inc.; 2024. 8. European Medicines Agency. DARZALEX 20 mg/mL concentrate for solution for infusion [summary of product characteristics]. Accessed August 6, 2024. https://www.ema.europa.eu/en/documents/product-information/darzalex-epar-product-information/darzalex-epar-product-information/darzalex-epar-product-information_en.pdf. 9. Wechalekar AD, et al. *Amyloid.* 2023;30(1):3-17.

ANDROMEDA: Study Design

 ANDROMEDA is a randomized, open-label, phase 3 study of DARA plus VCd (D-VCd) versus VCd alone in patients with newly diagnosed AL amyloidosis

- Cardiac stage (I vs II vs IIIA)
- Transplant typically offered in local country (yes vs no)
- Creatinine clearance (≥60 mL/min vs <60 mL/min)

Secondary endpoints: MOD-PFS (end-stage cardiac or renal disease, hematologic progression, or death),^b OS, organ response rate, time to hematologic response, safety

D-VCd, daratumumab 1,800 mg co-formulated with recombinant human hyaluronidase PH20 [rHuPH20; 2,000 U/mL; ENHANZE® drug delivery technology; Halozyme, Inc., San Diego, CA, USA)] plus VCd; eGFR, estimated glomerular filtration rate; SC, subcutaneous; QW, weekly; Q2W, every 2 weeks; Q4W, every 4 weeks. ^aDefined here as normalization of free light-chain (FLC) levels and ratio (FLCr) and negative serum and urine immunofixation, confirmed at a subsequent visit; normalization of uninvolved FLC level and FLCr were not required if involved FLC was lower than the upper limit of normal; ^bA composite endpoint defined as end-stage cardiac disease (requiring hemodialysis or renal transplant), hematologic progression per consensus guidelines,¹ or death. 1. Comenzo RL, et al. *Leukemia*. 2012;26(11):2317-2325.

ANDROMEDA: Baseline Demographic and Clinical Characteristics

Characteristic	D-VCd (n = 195)	VCd (n = 193)		
Age				
Median (range), years	62 (34-87)	64 (35-86)		
≥65, n (%)	87 (44.6)	96 (49.7)		
Male sex, n (%)	108 (55.4)	117 (60.6)		
Race, n (%) ^a				
White	151 (77.4)	143 (74.1)		
Black or African American	6 (3.1)	7 (3.6)		
Not reported	7 (3.6)	5 (2.6)		
ECOG PS score, n (%) ^b				
_ 0	90 (46.2)	71 (36.8)		
1	86 (44.1)	106 (54.9)		
2	19 (9.7)	16 (8.3)		
AL isotype, n (%) ^c				
Lambda	158 (81.0)	149 (77.2)		
_Kappa	37 (19.0)	44 (22.8)		
Median time since amyloidosis diagnosis (range), days	48 (8-1,611)	43 (5-1,102)		

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
19	D-VCd	VCd			
Characteristic	(n = 195)	(n = 193)			
Involved organs					
Median (range)	2 (1-5)	2 (1-6)			
Distribution, n (%)					
Heart	140 (71.8)	137 (71.0)			
Kidney	115 (59.0)	114 (59.1)			
Liver	15 (7.7)	16 (8.3)			
Other ^d	127 (65.1)	124 (64.2)			
Cardiac stage, n (%) ^e					
	47 (24.1)	43 (22.3)			
II	76 (39.0)	80 (41.5)			
IIIA	70 (35.9)	64 (33.2)			
IIIB ^f	2 (1.0)	6 (3.1)			
Renal stage, n/total n (%) ^g					
	107/193 (55.4)	101/193 (52.3)			
	67/193 (34.7)	74/193 (38.3)			
III	19/193 (9.8)	18/193 (9.3)			

#### Demographic and baseline characteristics were well balanced between groups

ECOG PS, Eastern Cooperative Oncology Group performance status; NT-proBNP, N-terminal pro–B-type natriuretic peptide. ^aRace was reported by the patient. ^bECOG PS is scored on a scale from 0 to 5, with 0 indicating no symptoms and higher scores indicating increasing disability. ^cData are based on immunofixation and light-chain measurement. ^dOther includes gastrointestinal tract, lung, peripheral nervous system, autonomic nervous system, and soft tissue. ^eCardiac stage was classified in accordance with the European modification of the staging system of the Mayo Clinic. ^eCardiac stage was based on 2 biomarker risk factors—NT-proBNP and high-sensitivity cardiac troponin T—that were assessed at a central laboratory. ^fAll the patients had a cardiac stage of I, II, or IIIA at screening; however, some converted to stage IIIB at Cycle 1, Day 1 (results determined by the central laboratory were made available only after Cycle 1, Day 1). ^gRenal stage is based on the combination of eGFR and urinary protein excretion.



## ANDROMEDA: Treatment Exposure and Subsequent Therapy

	D-VCd (n = 193)	VCd (n = 188)		
Median duration of study	21.3(0.03-26.7)	5 3 (0 03-7 3)		
treatment (range), months	21.3 (0.05-20.7)	0.0 (0.00-7.0)		
Median number of cycles	240(10250)	60(1060)		
received (range)	24.0 (1.0-25.0)	0.0 (1.0-6.0)		
Received 6 cycles of treatment	150 (00 4)	101 (64.4)		
per protocol, n (%) ^a	159 (82.4)	121 (04.4)		
Completed 2 years of DARA	404 (04 0)			
maintenance, n (%) ^a	124 (04.2)			
Most common reason for		JIC		
DARA discontinuation, n				
Death	23	C.C.		
ASCT	12	scie -		
Adverse event	11	×0 ¹ -		

#### Subsequent therapy

- Median duration of follow-up: 61.4 months
  - 25.9% (50/193) and 61.2% (115/188) of patients randomized to D-VCd and VCd, respectively, received subsequent therapy^b
- 71.3% (82/115) of patients in the VCd arm who received subsequent therapy received DARA-based treatment

## >70% of VCd patients who received subsequent therapy received DARA-based treatment

ASCT, autologous stem cell transplant.

^aPatients in the VCd arm received a maximum number of 6 cycles of treatment, whereas the maximum treatment duration was 2 years for patients in the D-VCd arm. ^bNon–cross-resistant subsequent therapy, which was defined as any anti–plasma cell agent not included in the original protocol-assigned treatment.



## ANDROMEDA: Overall Hematologic Complete Response Rate (Primary Endpoint)



• Median time to HemCR was 67.5 days for D-VCd versus 85.0 days for VCd

#### The final analysis confirms that the addition of DARA to VCd substantially increased HemCR versus VCd alone

OR, odds ratio. 1. Kastritis E, et al. N Engl J Med. 2021;385(1):46-58.

## ANDROMEDA: Overall Hematologic Response at the Final Analysis



#### The addition of DARA to VCd consistently led to higher rates of hematologic response

VGPR, very good partial response; CR, complete response; PR, partial response. 1. Kastritis E, et al. N Engl J Med. 2021;385(1):46-58.



## **ANDROMEDA: Major Organ Deterioration (MOD)–PFS^a**



#### The addition of DARA to VCd significantly improved MOD-PFS versus VCd

^aMOD-PFS is a composite endpoint defined as end-stage cardiac disease (requiring cardiac transplant, left ventricular assist device, or intra-aortic balloon pump), end-stage renal disease (requiring hemodialysis or renal transplant), hematologic progression per consensus guidelines, or death. ^bKaplan–Meier estimates. ^cMOD-PFS was analyzed by employing the inverse probability of censoring weight method. ^dCrossing the prespecified significance boundary of 0.0495.



## ANDROMEDA: Prespecified Subgroup Analysis of Major Organ Deterioration (MOD)–PFS

	MOD	)-PFS, /N	Mec MOD mor	dian -PFS, nths						•_(	MOD	-PFS, /N	Mee MOD moi	dian -PFS, nths				
Subgroup	D-VCd	VCd	D-VCd	VCd		HR (	(95% CI)		Subgroup	<u>`</u>	D-VCd	VCd	D-VCd	VCd		HR (	95% CI)	
Sex									Baseline creatinine cleara	ance								
Male	45/108	76/117	NE	22.14	<b>⊢</b> –⊣		0.46 (0.32-0	.66)	≥60 mL/min _⊘^	5	49/126	74/131	NE	28.42			0.46 (0.3	2-0.67)
Female	34/87	42/76	NE	33.61	⊢-●		0.49 (0.31-0	.78)	<60 mL/min		30/69	44/62	NE	29.90	<b>⊢</b> ●–1		0.47 (0.2	9-0.74)
Age								-	Baseline cardiac involven	ment								-
<65 years	38/108	52/97	NE	31.11	⊢●⊣		0.44 (0.29-0	.67)	Yes S		57/140	87/137	NE	21.88	H <del>o</del> H i		0.44 (0.3	81-0.61)
≥65 years	41/87	66/96	59.66	20.86	<b>⊢●</b> -1		0.51 (0.34-0	.75)	No		22/55	31/56	NE	42.41	<b>⊢</b> •−-į		0.55 (0.3	2-0.96)
Baseline weight									Baseline renal stage									
≤65 kg	23/62	49/74	NE	20.40	⊢●┥		0.35 (0.21-0	.57)	55		13/39	22/36	NE	20.57	⊢-●1 :		0.30 (0.1	5-0.60)
>65-85 kg	42/96	41/74	NE	23.66			0.58 (0.38-0	.89)	_ H)		20/56	35/60	NE	33.02			0.40 (0.2	23-0.70)
>85 kg	14/37	28/45	NE	38.21			0.47 (0.25-0	.89)	्रो।		7/19	13/18	59.33	45.50	┝━━┿	-	0.49 (0.1	9-1.24)
Race								Ó	Baseline alkaline phosph	atase								
White	64/151	87/143	NE	31.11	H		0.50 (0.36-0	.69)	Abnormal		4/11	12/15	NE	17.74	<b>⊢−−−</b> 1 i		0.20 (0.0	6-0.66)
Asian	7/30	21/34	NE	16.33			0.25 (0.11-0	.59)	Normal		75/184	106/178	NE	30.23	H <del>-</del> H		0.50 (0.3	87-0.67)
Other	8/14	10/16	53.59	24.05	⊢●		0.83 (0.32-2	.12)	Baseline ECOG PS score	е								
Baseline cardiac stage									0		34/90	40/71	NE	43.96			0.47 (0.3	80-0.75)
I	18/47	22/43	NE	48.59		ł	0.56 (0.30-1	.04)	1 or 2		45/105	78/122	NE	20.83	H●-1		0.49 (0.3	4-0.70)
	27/76	50/80	NE	24.64		Â	0.39 (0.24-0	.62)	Cytogenetic risk at study	entry								
IIIA/IIIB	34/72	46/70	59.66	20.86	<b>⊢−●−</b>	X	0.51 (0.33-0	.80)	High risk		6/17	15/19	NE	16.39			0.24 (0.0	9-0.62)
Residence in a country that	typically					. 0			Standard risk		55/138	90/147	NE	28.42			0.46 (0.3	3-0.65)
offers transplantation for pati	ients with					C C C			FISH t(11;14)									
	E0/447	00/440		00.74		3	0 45 (0 00 0	<u>()</u>	Abnormal		18/51	30/55	NE	34.10	- <b>-</b> 1 ∔		0.41 (0.2	23-0.75)
Yes	58/147	90/146	NE	20.74		D.	0.45 (0.32-0	.63)	Normal		13/44	32/52	NE	20.27	:		0.33 (0.1	7-0.63)
NO	21/48	28/47	NE	31.11			0.53 (0.30-0	.94)										
							10 · · · · · ·	· · · ·							<del></del>			· · · · · · ·
			0.01		0.1 1	 	10	100					0.01		0.1 1		10	100
				D-VC	dbetter	VC	d better	F						D-V	Cd better	V	Cd better	-

#### The addition of DARA to VCd provided MOD-PFS benefit across preplanned relevant subgroups



NE, not estimable; FISH, fluorescence in situ hybridization. MOD-PFS is a composite endpoint defined as end-stage cardiac disease (requiring cardiac transplant, left ventricular assist device, or intra-aortic balloon pump), end-stage renal disease (requiring hemodialysis or renal transplant), hematologic progression per consensus guidelines, or death.

## **ANDROMEDA: Overall Survival**



The addition of DARA to VCd significantly improved OS versus VCd despite cross-over in >70% of VCd patients who received DARA as subsequent therapy, highlighting the importance of DARA use in frontline treatment

^aCrossing the prespecified stopping boundary of 0.0163.



# ANDROMEDA: Prespecified Subgroup Analysis of Overall Survival

	Death, n/N	Media mor	n OS, hths			Death,	Median OS, months		
Subgroup	D-VCd VCd	D-VCd	VCd	HR (95% CI)	Subgroup	D-VCd VCd	D-VCd VCd	1	HR (95% CI)
Sex					Baseline creatinine clearan	nce			
Male	25/108 43/117	NE	NE He-É	0.59 (0.36-0.96)	≥60 mL/min	26/126 34/131	NE NE	<b>⊢</b> •∔	0.72 (0.43-1.21)
Female	21/87 23/76	NE	NE H	0.71 (0.39-1.28)	<60 mL/min	20/69 32/62	NE 49.61	┝━━━┥	0.50 (0.29-0.88)
Age				· · · · · · · · · · · · · · · · · · ·	Baseline cardiac involveme	ent			
<65 years	16/108 18/97	NE	NE I	0.74 (0.38-1.46)	Yes	42/140 54/137	NE NE	<b>⊢</b> •-	0.68 (0.45-1.02)
≥65 years	30/87 48/96	NE	60.25	0.63 (0.40-0.99)	No	4/55 12/56	NE NE	<b>⊢</b> É	0.31 (0.10-0.96)
Baseline weight				, , , , , , , , , , , , , , , , , , ,	Baseline renal stage				· · · · ·
≤65 kg	13/62 32/74	NE	NE H	0.39 (0.21-0.75)		7/39 10/36	NE NE		0.49 (0.18-1.28)
>65-85 kg	26/96 20/74	NE	NE H	0.96 (0.54-1.72)	NP [™]	7/56 18/60	NE NE	<b>⊢_</b>	0.37 (0.16-0.90)
>85 kg	7/37 14/45	NE	NE H	0.57 (0.23-1.41)	ла Ш	5/19 8/18	NE NE	⊢₋₊₊	0.66 (0.22-2.03)
Race					Baseline alkaline phosphat	tase			· · · · ·
White	37/151 48/143	NE	NE 🛏	0.68 (0.44-1.04)	Abnormal	2/11 6/15	NE 49.61		0.34 (0.07-1.68)
Asian	4/30 14/34	NE	NE H	0.25 (0.08-0.77)	Normal	44/184 60/178	NE NE	⊢●−j	0.66 (0.44-0.97)
Other	5/14 4/16	NE	NE 🕂	1.71 (0.46-6.37)	Baseline ECOG PS score				· · · · ·
Baseline cardiac stage					0	10/90 18/71	NE NE		0.39 (0.18-0.84)
I	3/47 7/43	NE	NE H	0.34 (0.09-1.30)	1 or 2	36/105 48/122	NE NE	⊢●Ĥ	0.82 (0.53-1.26)
	14/76 23/80	NE	NE H	0.63 (0.32-1.22)	Cytogenetic risk at study e	ntry			· · · · ·
IIIA/IIIB	29/72 36/70	NE	36.83	0.64 (0.39-1.05)	High risk	3/17 9/19	NE 56.87	<b>⊢</b>	0.26 (0.07-0.96)
Residence in a country that	typically			.0	Standard risk	31/138 51/147	NE NE		0.59 (0.37-0.92)
offers transplantation for par	tients with				FISH t(11;14)				
AL amyloidosis				~	Abnormal	8/51 16/55	NE NE	┝━━━━━┤	0.47 (0.20-1.11)
Yes	36/147 53/146	NE		0.61 (0.40-0.93)	Normal	7/44 20/52	NE NE		0.34 (0.14-0.81)
No	10/48 13/47	NE	NE E	0.72 (0.31-1.64)					
		<u> </u>	······································	<del> </del>			<del></del>	<del></del>	<del></del>
		0.01	0.1	1 10 1 <u>0</u> 0			0.01	0.1 1	10 100
		-	D-VCd better	VCd better			D-	VCd better	VCd better

#### The addition of DARA to VCd provided OS benefit across preplanned relevant subgroups



### **ANDROMEDA: Cardiac and Renal Response Rates**



## The addition of DARA to VCd led to 2 to 3 times higher cardiac and renal response rates versus VCd across study time points

CarCR, cardiac complete response. Both cardiac and renal response rates were determined by independent review committee assessment. Cardiac and renal response rates at a specific time point were calculated as the number of patients who had cardiac/renal response at the specific time point within a 1-month window; the denominator remained unchanged at each time point and represents the response-evaluable population. The cardiac/renal response rates displayed here are results without censoring non-cross-resistant anti-plasma therapy.



## ANDROMEDA: Major Organ Deterioration (MOD)–PFS and Overall Survival by Hematologic Complete Response



#### Achieving HemCR was associated with improved MOD-PFS and OS from the 6-month landmark analysis and beyond





## ANDROMEDA: Major Organ Deterioration (MOD)–PFS and Overall Survival by Cardiac Complete Response



#### Achieving CarCR was associated with improved MOD-PFS and OS

^aMOD-PFS is a composite endpoint defined as end-stage cardiac disease (requiring cardiac transplant, left ventricular assist device, or intra-aortic balloon pump), end-stage renal disease (requiring hemodialysis or renal transplant), hematologic progression per consensus guidelines, or death. ^bWhen assessing the correlation between MOD-PFS and CarCR, MOD-PFS was censored for non–cross-resistant subsequent therapy. There were 8 patients who achieved CarCR after receiving non–cross-resistant subsequent therapy; these 8 patients were treated as non-CarCR for the evaluation of MOD-PFS.



## ANDROMEDA: Major Organ Deterioration (MOD)–PFS by Hematologic and Cardiac Complete Response



Achieving HemCR or CarCR was associated with improved MOD-PFS
DARA treatment effect was demonstrated in both Hem/Car CR and non-CR patients

^aMOD-PFS is a composite endpoint defined as end-stage cardiac disease (requiring cardiac transplant, left ventricular assist device, or intra-aortic balloon pump), end-stage renal disease (requiring hemodialysis or renal transplant), hematologic progression per consensus guidelines, or death. ^b6-month landmark analysis. ^cWhen assessing the correlation between MOD-PFS and CarCR, MOD-PFS was censored for non–cross-resistant subsequent therapy. There were 8 patients who achieved CarCR after receiving non–cross-resistant subsequent therapy; these 8 patients were treated as non-CarCR for the evaluation of MOD-PFS.



## **ANDROMEDA: Safety**^a

	D-\ (n =	/Cd 193)	VCd (n = 188)			
Event, n (%)	Any grade	Grade 3/4	Any grade	Grade 3/4		
Peripheral edema	71 (36.8)	6 (3.1)	68 (36.2)	11 (5.9)		
Diarrhea	70 (36.3)	11 (5.7)	57 (30.3)	7 (3.7)		
Constipation	70 (36.3)	3 (1.6)	54 (28.7)	0		
Peripheral sensory neuropathy	65 (33.7)	5 (2.6)	37 (19.7)	4 (2.1)		
Fatigue	55 (28.5)	10 (5.2)	53 (28.2)	6 (3.2)		
Nausea	55 (28.5)	3 (1.6)	52 (27.7)	0		
Upper respiratory tract infection	50 (25.9)	1 (0.5)	21 (11.2)	1 (0.5)		
Anemia	49 (25.4)	8 (4.1)	44 (23.4)	9 (4.8)		
Insomnia	49 (25.4)	0	47 (25.0)	2 (1.1)		
Dyspnea	49 (25.4)	5 (2.6)	32 (17.0)	6 (3.2)		
Lymphopenia	37 (19.2)	25 (13.0)	28 (14.9)	19 (10.1)		
Hypokalemia	26 (13.5)	4 (2.1)	28 (14.9)	10 (5.3)		
Pneumonia	24 (12.4)	16 (8.3)	12 (6.4)	8 (4.3)		
Neutropenia	21 (10.9)	10 (5.2)	12 (6.4)	5 (2.7)		
Cardiac failure	18 (9.3)	12 (6.2)	10 (5.3)	5 (2.7)		
Syncope	16 (8.3)	12 (6.2)	12 (6.4)	12 (6.4)		

omotionaluse

#### Safety data were consistent with the known safety profiles for VCd and DARA



Adverse events of any grade that were reported in >25% of patients in either treatment group and grade 3 or 4 adverse events that were reported in >5% of patients in either treatment group are listed.



## **ANDROMEDA: Conclusions**

- With 5 years of follow-up, D-VCd was superior to VCd and had a manageable safety profile:
  - Substantially deeper HemCR rates (59.5% vs 19.2%) and more rapid responses (67.5 vs 85.0 days)
  - Cardiac and renal response rates were 2 to 3 times higher, translating into better MOD-PFS (HR, 0.44) and OS (HR, 0.62)
  - Improvement in MOD-PFS and OS was generally consistent across preplanned relevant subgroups
  - Achievement of HemCR (MOD-PFS: HR, 0.30; OS: HR, 0.41) or CarCR (MOD-PFS: HR, 0.23; OS: HR, 0.05) correlated with favorable long-term outcomes
  - DARA treatment effect on MOD-PFS was demonstrated in both Hem/Car CR and non-CR patients
- The addition of DARA to VCd significantly improved OS versus VCd despite DARA cross-over in >70% of VCd patients who received subsequent therapy, highlighting the importance of frontline D-VCd

ANDROMEDA shows that the addition of DARA to VCd improves survival for patients with newly diagnosed AL amyloidosis and reaffirms frontline D-VCd as the SoC in this difficult-to-treat disease



MOD-PFS is a composite endpoint defined as end-stage cardiac disease (requiring cardiac transplant, left ventricular assist device, or intra-aortic balloon pump), end-stage renal disease (requiring hemodialysis or renal transplant), hematologic progression per consensus guidelines, or death.

#### **ANDROMEDA: Acknowledgments**

- Patients who participated in this study
- Investigators and staff members at the study sites
- Members of the independent data monitoring committee
- Members of the independent review committee
- Staff members involved in data collection and analyses

This study was sponsored by Janssen Research & Development, LLC. Medical writing and editorial support were provided by Lisa Shannon, PharmD, and Melissa Brunckhorst, PhD (Lumanity Communications Inc.) and were funded by Janssen Global Services, LLC.



https://www.congresshub.com/ASH2024/ Oncology/Daratumumab/Kastritis

The QR code is intended to provide scientific information for individual reference, and the information should not be altered or reproduced in any way.

