First-Line Ibrutinib Plus Venetoclax Versus Chlorambucil Plus Obinutuzumab in Elderly or Comorbid Patients With Chronic Lymphocytic Leukemia: GLOW Study 67-Month Follow-up and Adverse Event-Free Progression-Free Survival Analysis

Carsten U Niemann¹, Talha Munir², Carolyn Owen³, George Follows⁴, José-Ángel Hernández-Rivas⁵, Ohad Benjamini⁶, Ann Janssens⁷, Mark-David Levin⁸, Tadeusz Robak⁹, Martin Simkovic¹⁰, Sergey Voloshin¹¹, Vladimir Vorobyev¹², Loic Ysebaert¹³, Natasha Schuier¹⁴, Kurt Baeten¹⁵, Ping Xu¹⁶, Nguyet Tran¹⁶, Bennett Levitan¹⁶, Claire Kavanagh¹⁷, Arnon P Kater¹⁸

¹Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark; ²St James's Hospital, Leeds, UK; ³Tom Baker Cancer Centre, Calgary, Alberta, Canada; ⁴Addenbrookes Hospital, Cambridge, UK; ⁵Hospital Universitario Infanta Leonor, Universidad Complutense, Madrid, Spain; ⁶Sheba Medical Center, Ramat Gan, Israel; ⁷Universitaire Ziekenhuizen Leuven, Leuven, Belgium; ⁸Albert Schweitzer Hospital, Dordrecht, Netherlands; ⁹Medical University of Lodz, Copernicus Memorial Hospital, Lodz, Poland; ¹⁰4th Department of Internal Medicine – Haematology, Faculty of Medicine in Hradec Králové, University Hospital and Charles University in Prague, Hradec Kralove, Czech Republic; ¹¹Russian Scientific and Research Institute of Hematology and Transfusiology, St. Petersburg, Russia;

https://www.congresshub.com/ASH2024/Oncology/lbruti nib/Niemann

> The QR code is intended to provide scientific information for individual reference, and the information should not be altered or reproduced in any way.

¹²S.P. Botkin Moscow City Clinical Hospital, Moscow, Russia; ¹³Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France; ¹⁴Janssen Research & Development, Düsseldorf, Germany; ¹⁵Janssen Research & Development, Beerse, Belgium; ¹⁶Janssen Research & Development, Titusville, NJ, USA; ¹⁷Janssen-Cilag, Dublin, Ireland; ¹⁸Amsterdam University Medical Centers, Cancer Center Amsterdam, University of Amsterdam, Netherlands

Progression-Free Survival (1 of 2)

- With a median follow-up of 67 months, Ibr+Ven prolonged PFS, reducing the risk of progression or death by 73% versus Clb+O (HR 0.273 [95% CI, 0.186-0.401], nominal p < 0.0001) (**Figure 1A**)
 - Estimated 66-month PFS rates were 51.7% and 18.1% for lbr+Ven and Clb+O, respectively
- Ibr+Ven prolonged PFS independent of IGHV status (uIGHV: HR 0.273 [95% CI, 0.171-0.434], nominal p < 0.0001; mIGHV: HR 0.246 [95% CI, 0.097-0.619], nominal p = 0.0014) (**Figure 1B**)
 - Estimated 66-month PFS rates in the lbr+Ven group were 41.6% and 76.4% for patients with uIGHV (n = 67) and mIGHV (n = 32), respectively
 - Estimated 66-month PFS rates in the Clb+O group were 8.8% for patients with uIGHV (n = 57) and 35.1% of patients with mIGHV (n = 35)

Progression-Free Survival (2 of 2)

- Estimated PFS rates at 54 months post treatment in the lbr+Ven group were 64% for patients with uMRD (n = 58) and 50% for patients with dMRD (n = 31) at EOT+3, whereas estimated PFS rates at 54 months post treatment in the Clb+O group were 41% for patients with uMRD (n = 41) and 0% for patients with dMRD (n = 47) at EOT+3 (**Figure 1C**)
- uMRD at EOT+3 was more critical for long-term PFS in patients with uIGHV versus those with mIGHV treated with lbr+Ven (Figure 1D)
 - uIGHV patients: 54-month posttreatment PFS rates were 60% for uMRD (n = 40) and 28% for dMRD (n = 16)
 - mIGHV patients: 54-month posttreatment PFS rates were 92% for uMRD (n = 13) and 71% for dMRD (n = 14)

Overall Survival

- Ibr+Ven demonstrated an OS advantage versus Clb+O, reducing relative risk of death by 54% (HR 0.459 [95% CI, 0.271-0.776], nominal p = 0.0029) (**Figure 2A**)
 - 66-month OS rates were 79.0% and 60.8% for Ibr+Ven and Clb+O, respectively
- There was a trend toward improved OS observed for Ibr+Ven over Clb+O for both uIGHV and mIGHV groups (Figure 2B)
 - In patients with uIGHV, 66-month OS rates were 76.5% (n = 67) and 59.9% (n = 57) for Ibr+Ven and Clb+O, respectively
 - In patients with mIGHV, 66-month OS rates were 89.8% (n = 32) and 61.9% (n = 35) for Ibr+Ven and Clb+O, respectively

Time to Next Treatment

- At 67-month median follow-up, Ibr+Ven reduced the risk of needing second-line treatment by 77% compared with Clb+O (HR 0.226 [95% CI, 0.127-0.403], nominal p < 0.0001) (**Figure 3A**)
 - At 66 months, 19.3% of patients in the Ibr+Ven group and 52.0% in the Clb+O group required second-line treatment
- Ibr+Ven reduced the risk of needing second-line therapy versus Clb+O in patients with uIGHV (HR 0.171 [95% CI, 0.085-0.344]; nominal p < 0.0001); there was no difference in patients with mIGHV (HR 1.199 [95% CI, 0.314-4.585], nominal p = 0.7905) (**Figure 3B**)
 - For patients with uIGHV at 66 months, 20.7% (n = 67) in the Ibr+Ven group and 68.1% (n = 57) in the Clb+O group required second-line treatment
 - For patients with mIGHV at 66 months, 19.7% (n = 32) in the Ibr+Ven group and 22.9% (n = 35) in the Clb+O group required second-line treatment

Treatment-Free Survival

- At 67-month median follow-up, Ibr+Ven prolonged treatment-free survival time by 66% compared with Clb+O (HR 0.337 [95% Cl, 0.224-0.507], nominal p < 0.0001) (**Figure 4**)
- The estimated 66-month rate of treatment-free survival time was 65.7% for lbr+Ven and 29.8% for Clb+O

Subsequent Treatment After Disease Progression

Subsequent treatment for patients with PD, n (%)	Ibr+Ven (n = 28)	Clb+O (n = 76)
Patients with subsequent therapy	16 (57.1)	46 (60.5)
Types of subsequent treatments		
High-dose therapy/stem cell transplant	0	0
Radiotherapy	1 (3.6)	2 (2.6)
Surgery	1 (3.6)	1 (1.3)
Systemic therapy	10 (35.7)	26 (34.2)
Antine oplastic agents	9 (32.1)	26 (34.2)
Monoclonal antibodies	6 (21.4)	13 (17.1)
Rituximab	5 (17.9)	13 (17.1)
Brentuximab vedotin	1 (3.6)	0
Nitrogen mustard analogues	4 (14.3)	1 (1.3)
Cyclophosphamide	2 (7.1)	1 (1.3)
Bendamustine	1 (3.6)	1 (1.3)
Chlorambucil	1 (3.6)	0.0
Other antineoplastic agents	4 (14.3)	12 (15.8)
Venetoclax	3 (10.7)	12 (15.8)
Idelalisib	1 (3.6)	1 (1.3)
Anthracyclines and related substances	3 (10.7)	1 (1.3)
Doxorubicin	3 (10.7)	1 (1.3)
Vinca alkaloids and analogues	3 (10.7)	2 (2.6)
Vinblastine	2 (7.1)	1 (1.3)
Vincristine	1 (3.6)	0
Vincristine sulfate	0	1 (1.3)

Subsequent treatment for patients with PD, n (%)	Ibr+Ven (n = 28)	Clb+O (n = 76)
Other alkylating agents	1 (3.6)	1 (1.3)
Dacarbazine	1 (3.6)	1 (1.3)
Other cytotoxic antibiotics	1 (3.6)	0
Bleomycin	1 (3.6)	0
Protein kinase inhibitors	9 (32.1)	38 (50.0)
Ibrutinib	8 (28.6)	31 (40.8)
Acalabrutinib	0	7 (9.2)
Zanubrutinib	1 (3.6)	0
Folic acid analogues	0	1 (1.3)
Methotrexate	0	1 (1.3)
Methylhydrazines	0	1 (1.3)
Procarbazine	0	1 (1.3)
Investigational drug	0	1 (1.3)
Corticosteroids for systemic use	0	2 (2.6)
Glucocorticoids	0	2 (2.6)
Dexamethasone	0	1 (1.3)
Prednisolone	0	1 (1.3)
Prednisone	0	1 (1.3)

• Best responses for patients in the lbr+Ven group (n = 8) who received single-agent ibrutinib: 1 complete response, 3 partial responses; 4 did not have disease assessment at clinical cutoff

Total Number of Second Primary Malignancies

n (%)	Ibr+Ven (n = 106)	Clb+O (n = 105)
≥ 1 other malignancies	14 (13.2)	18 (17.1)
Non-melanoma skin cancer	5 (4.7)	4 (3.8)
Melanoma skin cancer	1 (0.9)	2 (1.9)
Non-skin cancer	10 (9.4)	12 (11.4)
Hematologic malignancies	5 (4.7)	1 (1.0) ^a

- 14 patients (13.2%) who received Ibr+Ven and 18 (17.1%) who received Clb+O had second primary malignancies
 - Non-skin cancer: 10 (9.4%) in Ibr+Ven versus 12 (11.4%) in Clb+O
- All patients were past the treatment-emergent period in the previous analysis. Therefore, the safety analysis was limited to overall incidence of second primary malignancies

Grade 3/4 TEAE-Free PFS

- Compared with Clb+O, patients in the lbr+Ven group spent more time in the no grade 3/4 TEAEs, no progressive disease health state (Figure 5)
- Areas under the curve for grade 3/4 TEAE TOX time, grade 3/4 TEAE-free PFS, and alive postprogression are generated from partition curves for lbr+Ven and Clb+O (Figure 6)
 - Patients treated with Ibr+Ven spent longer time in the grade 3/4 TEAE TOX time state versus Clb+O (1.9 vs 1.1 months, nominal p = 0.004)
 - Patients in the lbr+Ven group spent more than
 21 months longer in the grade 3/4 TEAE-free PFS compared with Clb+O (51.6 vs 30.2 months;
 nominal p = 0.0052)

RMST, months (95% CI)	lbr+Ven	Clb+O	Estimated Difference Between Ibr+Ven and Clb+O, RMST (95% CI) Nominal <i>p</i> Value
Grade 3/4 TOX time	1.9	1.1	0.9 (0.4-1.4)
	(1.5-2.4)	(0.8-1.4)	p = 0.0042
PFS	53.5	31.2	22.3 (15.6-27.7)
	(48.9-57.3)	(27.6-35.8)	p = 0.0052
OS	64.7	59.5	5.25 (-0.1 to 10.9)
	(61.2-69.5)	(55.9-63.8)	p = 0.0047
Grade 3/4 TEAE-free PFS	51.6	30.2	21.4 (15.0-26.8)
	(46.7-55.3)	(26.5-34.7)	p = 0.0052
Postprogression survival time	11.2	28.2	2.5 (-21.8 to -11.4)
	(9.0-15.4)	(24.4-34.0)	p = 0.0054

https://www.congresshub.com/ASH2024/Oncology/lbruti nib/Niemann

The QR code is intended to provide scientific information for individual reference, and the information should not be altered or reproduced in any way.

