Identification of Fibroblast Growth Factor Receptors (FGFRs) Alterations (alts) at DNA and RNA-level by One-Step Next-Generation Sequencing

Min Qing¹, Xuejun Chen⁴, Wenqing Su⁴, Xiaofang Zhuo³, Ting Shen¹, Chengjuan Xiong¹, Xuesong Lyu¹, Renee Tate², Qibiao Wu¹, Longen Zhou¹, Shibu Thomas², Wangwang Ning⁴, Jianqing Wang⁴, Huihui Yan⁴, Ziqiang Yin⁴, Zhan Huang⁴, Yaxin Xue⁴, Changbin Zhu^{4#}.

INTRODUCTION

- FGFR inhibitors are currently in clinical development¹ or approved for locally advanced/metastatic urothelial cancer (e.g., erdafitinib)² and cholangiocarcinoma with FGFR fusion or/and mutation³.
- AmoyDx FGFR NGS Panel was developed for FGFR alteration detection based on both DNA and RNA.
- The goal of this study is to assess and validate the performance of AmoyDx FGFR NGS Panel in pan-cancer FGFR alteration detection by comparing with a comprehensive genomic profiling test (AmoyDx master panel) and a health authority (HA) approved DNA-based NGS panel.

Assay type	Panel size	Alteration type		
	Fallel Size	DNA	RNA	
AmoyDx FGFR NGS panel	FGFR 1-4	mutations	Fusions	
AmoyDx master panel	Broad panel	mutations	Fusions	
HA approved DNA-based NGS panel	Broad panel	mutations, fusions	NA	

METHODS

- DNA&RNA co-capture process was developed for AmoyDx FGFR NGS panel (Figure 1). Libraries was built using "one-step" method (Reverse transcription of RNA and PCR of cDNA were done in one-step operation) . LOD of SNV/Indel was 5% VAF, 250 copies/100ng.
- Both AmoyDx FGFR NGS Panel and AmoyDx master panel are DNA/RNA based for detecting FGFR alteration with optimized bioinformatics pipeline to eliminate baseline noise caused by deamination events, which is commonly found in aged FFPE samples.
- Cell lines, cell line/patient derived xenografts (CDXs/PDXs) and 397 samples of 26 cancer types (90 samples >10 years) were used for validation of AmoyDx FGFR NGS Panel.
- Total 382 and 50 pan-cancer samples were respectively tested to compare AmoyDx FGFR NGS Panel with AmoyDx master panel and HA approved DNA-based NGS panel.
- Break-apart FISH (Fluorescence In Situ Hybridization) assay was carried out on FFPE slides using AmoyDx FGFR2 Fusion Analysis Kit.

FIGURE 1: Workflow of AmoyDx FGFR NGS panel.

RESULTS

100% accuracy of AmoyDx FGFR NGS panel in reference alterations detection

□ 36 FFPE samples from cell lines and CDXs/PDXs with known FGFR status (25 fusions, 5 mutations, 6 wild-types) were tested by AmoyDx FGFR NGS Panel with concordance rate 100% (Table 1).

TABLE 1: 100% assay accuracy achieved by AmoyDx FGFR NGS panel

	Reference alterations			Reference alterations	
	Mutation	Positive	Negative	Total	Fusions Mutations
	Positive	5	0	5	FGFR2-AFF3 FGFR3 R248C
	Negative	0	31	31	FGFR2-BICC1 FGFR3 S249C
AmoyDx	Total	5	31	36	FGFR2-CASP7 FGFR3 Y373C
Panel	Fusion	Positive	Negative	Total	FGFR2-CCDC6 FGFR3 C382R
. uner	Positive	25	0	25	FGFR2-MCU
	Negative	0	11	11	FGFR2-OFD1
	Total	25	11	36	COL25A1-FGFR2
The overall percent 100% agreement			FGFR3-BAI1AP2L1		
		100%		FGFR3-TACC3	

- 1. Janssen Research & Development, Shanghai, China.
- 2. Janssen Research & Development, Spring House, PA, USA.
- Janssen Research & Development, Beijing, China.
- 4. Amoy Diagnostics Co., Ltd

RESULTS

High concordance between AmoyDx FGFR NGS panel and reference assays

- □ In clinical sample testing, AmoyDx FGFR NGS Panel showed high agreement with AmoyDx master panel (99.5%, Table 2) and HA approved DNA-based NGS panel (98.0%, Table 3)
 - TABLE 2: High concordance between AmoyDx FGFR NGS Panel and AmoyDx master panel

	AmoyDx master panel			
	Mutation	Positive	Negative	Total
	Positive	29	0	29
AmoyDx	Negative	1	194	195
	Total	30	194	224
Panel	Fusion	Positive	Negative	Total
	Positive	20	1	21
	Negative	0	137	137
	Total	20	138	158
The overall r	ercent agreement		99 50%	

The overall percent agreemen

TABLE 3: High concordance between AmoyDx FGFR NGS Panel and HA approved DNA-based NGS panel.

	HA approved DNA-based NGS panel			
AmoyDx FGFR NGS Panel	Alteration	Positive	Negative	Total
	Positive	12	1	13
	Negative	0	37	37
	Total	12	38	50
The overall p	ercent agreement		98.00%	\mathcal{N}

Conflicting result between AmoyDx FGFR NGS panel and HA approved DNAbased NGS panel was confirmed by FISH

Conflicting result confirmed by FISH revealed 1 fusion missed by HA approved DNA-based NGS panel but detected by AmoyDx FGFR NGS Panel (Figure 2 and 3), which demonstrated advantage of FGFR alteration detection by DNA+RNA.

FIGURE 2: Conflicting result confirmed Positive by FISH

lote: Analysis was performed using 100 × oil objective for left image. Representative image of positive signal was enlarged on the ght. FGFR2 dual color break-apart, probe consist of 5' end green and 3' end red signals. Either single green dot or separate green FIGURE 3: Detailed FGFR breakpoints and fusion form of the conflicting

Using Algorithm to filter false C:G>T:A substitutions (Figure 4)

- □ An optimized bioinformatics pipeline for identifying deamination events could effectively filtered out C:G>T:A false positive signals⁴. Through the filtering process, the number of C>T substitutions in the raw data was reduced from 1291
- to 78, and the number of G>A substitutions was reduced from 1913 to 85. FIGURE 4: Identified C>T and G>A substitution events between raw data

High success rate of AmoyDx FGFR NGS panel detection in samples with long storage time (Figure 5)

The testing success rates of samples less than 5 years old, more than 5 years old and more than 10 years old were 93.3%, 87.8% and 86.8%, respectively.

FIGURE 5: High success rate of AmoyDx FGFR NGS panel detection in samples with long storage time

Detected FGFR alterations in different cancer types (Figure 6)

□ FGFR alteration differs between cancer types. FGFR3 SNV/Indel frequently occurred in Urothelial Carcinoma and Non-small cell lung cancer. In Endometrial carcinoma, FGFR2 mutations commonly occurred. FGFR2 fusions were predominant FGFR alteration in cholangiocarcinoma.

FIGURE 6: Identified FGFR alteration in multiple cancer types.

REFERENCES:

- Pant S, et al. Lancet Oncol. 2023 Aug;24(8):925-935
- Yohann L, et al. N Engl J Med 2023 Nov; 389:1961-1971. Zhang Y, et al. Cancers (Basel). 2022 Oct 17; 14 (20): 1-21
- David H. Spencer, et al. J Mol Diagn. 2013 Sep;15(5):623-33. Δ

KEY TAKEAWAY

AmoyDx FGFR NGS Panel provides a novel opportunity to identify FGFR altered pan-cancer patients using a robust DNA+RNA NGS platform, which shows high success rate even in aged samples and may be a potent tool for sensitive and reliable detection of FGFR alts for clinical diagnostics.

FGFR alteration differs between cancer types. Comprehensive platform using RNA and DNA for sequencing may fully identify patients with FGFR alteration to guide treatment.

CONCLUSIONS

AmoyDx FGFR NGS panel (DNA/RNA based) showed high concordance with AmoyDx master panel and HA approved DNA-based NGS panel in FGFR alteration testing, including mutations and fusions.

An optimized bioinformatics pipeline for identifying deamination events could effectively filtered out C:G>T:A false positive signals.

AmoyDx FGFR NGS panel yielded similar success rates from samples new and older than 10 years old.

DISCLOSURES

Min Qing, Xiaofang Zhuo, Ting Shen, Chengjuan Xiong, Xuesong Lyu, Renee Tate, Qibiao Wu, Longe Zhou, and Shibu Thomas are full employee of Janssen Research & Development. in Chen, Wenqing Su, Wangwang Ning, Jianqing Wang, Huihui Yan, Ziqiang Yin, Zhan Huang Xue, and Changbin Zhu are full employee of AmoyDX.

The QR code is intended to provide scientific information for individual reference, and the nformation should not be altered or reproduced in any way.