Amivantamab in Wild-type Advanced Non-small Cell Lung Cancer (NSCLC) After Disease Progression on Checkpoint Inhibition and Chemotherapy: Results from the Phase 1b CHRYSALIS Study

Byoung Chul Cho,¹ Jonathan Goldman,² Natasha Leighl,³ Filippo De Braud,⁴ Ki Hyeong Lee,⁵ François Ghiringhelli,⁶ Pilar Garrido,⁷ Julio Peguero,⁸ Benjamin Besse,⁹ Phillippe Cassier,¹⁰ Nicolas Girard,¹¹ Maria de Miguel,¹² Rosa Alvarez,¹³ Alastair Greystoke,¹⁴ Yuchiro Ohe,¹⁵ Te-Chun Hsia,¹⁶ Joshua C. Curtin,¹⁷ Sanjib Chowdhury,¹⁸ Xuesong Lyu,¹⁹ Grace Gao,¹⁹ Siyang Qu,¹⁹ Patricia Lorenzini,¹⁷ Aastha Kapoor,¹⁷ Priya Kim,¹⁷ Mahadi Baig,²⁰ Meena Thayu,¹⁷ Roland E. Knoblauch,¹⁷ Sandrine Hiret,²¹ Pascale Tomasini²²

¹Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; ²David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA, USA; ³Princess Margaret Cancer Centre, Toronto, Canada; ⁴Fondazione IRCCS Istituto Nazionale dei Tumori and University of Milan, Milan, Italy; ⁵Chungbuk National University Hospital, Cheongju, South Korea. ⁶Institut National de la Santé et de la Recherche Médicale (INSERM) and Cancer Center GF Leclerc, Dijon, France; ⁷Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain; ⁸Oncology Consultants, Houston, TX, USA; ⁹Cancer Medicine Department, Gustave Roussy, Villejuif, France & Paris-Saclay University, Orsay, France; ¹⁰Centre Léon Bérard, Lyon, France; ¹¹Institut du Thorax Curie-Montsouris, Paris, France and Paris Saclay University, UVSQ, Versailles, France; ¹²START-CIOCC Hospital Universitario HM Sanchinarro, Madrid, Spain; ¹³Gregorio Marañón Hospital, Madrid, Spain; ¹⁴Sir Bobby Robson Clinical Trials Unit, Freeman Hospital, Newcastle upon Tyne, UK; ¹⁵National Cancer Center Hospital, Tokyo, Japan; ¹⁶Division of Pulmonary and Critical Care Medicine, China Medical University Hospital, Taichung, Taiwan; ¹⁷Janssen Research & Development, Spring House, PA, USA; ¹⁸Janssen Research & Development, Cambridge, MA, USA; ¹⁹Janssen Research & Development, Shanghai, China; ²⁰Janssen Research & Development, Raritan, NJ, USA; ²¹Institut de Cancérologie de l'Ouest-Site René Gauducheau, Saint Herblain, France; ²²Hôpitaux Universitaires, de Marseille Timone, France.

Presented by BC Cho at American Association for Cancer Research; April 5–10, 2024; San Diego, CA, USA.

https://www.congresshub.com/Oncology/ AACR2024/Amivantamab/Cho

The QR code is intended to provide scientific information for individual reference, and the information should not be altered or reproduced in any way.

Declaration of Interests: Byoung Chul Cho

- Stock or stock options: TheraCanVac Inc, Gencurix Inc, BridgeBio Therapeutics, KANAPH Therapeutic Inc, Cyrus Therapeutics, Interpark Bio Convergence Corp., J INTS BIO
- Royalties/intellectual property/patent beneficiary: Champions Oncology, Crown Bioscience, Imagen
- Research funding: MOGAM Institute, LG Chem, Oscotec, Interpark Bio Convergence Corp, GlInnovation, GI-Cell, Abion, Abbvie, AstraZeneca, Bayer, Blueprint Medicines, Boehringer Ingelheim, Champions Oncology, CJ Bioscience, CJ Blossom Park, Cyrus, Dizal Pharma, Genexine, Janssen, Lilly, MSD, Novartis, Nuvalent, Oncternal, Ono, Regeneron, Dong-A ST, Bridgebio Therapeutics, Yuhan, ImmuneOncia, Illumina, Kanaph Therapeutics, Therapex, J INTS BIO, Hanmi, CHA Bundang Medical Center
- Advisory board: KANAPH Therapeutic Inc, Bridgebio Therapeutics, Cyrus Therapeutics, Guardant Health, Oscotec Inc
- **Consultant:** Abion, BeiGene, Novartis, AstraZeneca, Boehringer-Ingelheim, Roche, BMS, CJ, CureLogen, Cyrus Therapeutics, Ono, Onegene Biotechnology, Yuhan, Pfizer, Eli Lilly, GI-Cell, Guardant, HK Inno-N, Imnewrun Biosciences Inc., Janssen, Takeda, MSD, Medpacto, Blueprint Medicines, RandBio, Hanmi
- Founder: DAAN Biotherapeutics (Founder)
- Member of the board of directors: Interpark Bio Convergence Corp., J INTS BIO

Background

- Amivantamab is an EGFR-MET bispecific antibody with immune cell-directing activity that has shown antitumor clinical activity across a range of EGFR- and MET-driven disease¹⁻⁴
- Overexpression of EGFR and MET have been observed in previously untreated wild-type adenocarcinoma and squamous NSCLC and are associated with cancer progression^{5,6}
- Amivantamab has demonstrated anti-tumor activity through multiple mechanisms of action, with ligand binding identified as the primary mechanism in wild-type NSCLC patient-derived xenograph models⁷
 - Additionally, preclinical inhibition of ligand binding by amivantamabled to reduced EGFR and MET signaling in wild-type NSCLC¹

We evaluated amivantamab monotherapy activity in patients with wild-type NSCLC after disease progression on platinum-based chemotherapy and anti-PD-1 or PD-L1 therapy

2L, second-line; ADCC, antibody-dependent cellular cytotoxicity; *EGFR*, epidermal growth factor receptor; Ex20ins, exon 20 insertions; HGF, hepatocyte growth factor; *MET*, mesenchymal-epithelial transition factor; *MET*ex14, MET exon 14 skipping mutation; NSCLC, non-small cell lung cancer; WT, wild-type.

1. Moores S, et al. *Cancer Res.* 2016;76(13):3942-3953. 2. Vijayaraghavan S, et al. *Mol Cancer Ther.* 2020;19(10):2044-2056. 3. Yun J, et al. *Cancer Discov.* 2020;10(8):1194-1209. 4. RYBREVANT (amivantamab-vmjw) injection, for intravenous use [prescribing information]. Horsham, PA: Janssen Biotech, Inc.; 2021. 5. Huang L, et al. *J Thorac Oncol.* 2014;9: 725–728. 6. Xu N, et al. *Oncotarget.* 2016;7(4):3884-96. 7. Henley B, et al. *Cancer Research.* 2021;81(13_Supplement):Abstract nr 953.

Methods

Dose-escalation phase

RP2D was identified: Amivantamab 1050 mg IV (1400 mg if ≥80 kg)

Eligibility Criteria for WT Cohorts

- Patients with advanced NSCLC that did not have *EGFR*, *ALK*, or *MET*ex14 activating mutations (wild-type NSCLC)
- Adenocarcinoma (for WT-Ad) or squamous cell carcinoma (for WT-Sq) histology
- Confirmed EGFR and/or MET expression by IHC^a
- Previously treated with anti-PD-1/PD-L1 and chemotherapy

Dose-expansion cohorts

Cohort A: Post-any EGFR TKI (T790M+, C797S+)

Cohort B: Post-any EGFR TKI (T790M-, C797S-)

Cohort C: Post-osimertinib (C797S+)

Cohort D: EGFR Ex20ins^b

Cohort MET-1: Post-any EGFR TKI (MET amplified)

Cohort MET-2: *MET*ex14^c

Cohort WT-Add: *EGFR* wild-type status adenocarcinoma

Cohort WT-Sqd: *EGFR* wild-type status SCC

Leader Leader

- CHRYSALIS also included 2 additional combination cohorts:
- Amivantamab + lazertinib
- Amivantamab + carboplatin-pemetrexed

All cohorts in the CHRYSALIS study are now closed

^aPatients had to have 1+ staining (defined as ≥50% positive 1+/2+/3+) using archival tissue submitted during prescreening or fresh tissue during screening. ^bCohort D was presented at WCLC 2020 (Sabari, JK. *J Thorac Oncol.* 2021;16(3):S108-109. OA04.04). ^cPrimary *MET*ex14 mutation was confirmed locally; all patients must have failed or be ineligible for standard of care therapy. Data for patients with *MET*ex14 (including those in cohorts other than Cohort MET-2) was presented at WCLC 2023 (Leighl, N. *J Thorac Oncol.* 2023;18(11S):S93-94. OA21.04). ^dDue to slow enrollment progress, both cohorts were closed to further enrollment once one cohort (WT-Ad) had reached the protocol-defined interim analysis. ^eResponse was assessed by the investigator per RECIST v1.1. ^fPercentage of patients with confirmed response or SD of ≥11 weeks duration.

EGFR, epidermal growth factor receptor; ex20ins; exon 20 insertion mutation; IHC, immunohistochemistry; IV, intravenous; MET, mesenchymal-epithelial transition factor; METex14, MET exon 14 skipping mutation; NSCLC, non-small cell lung cancer; RP2D, recommended phase 2 dose; SCC, squamous cell carcinoma; SD, stable disease; TKI, tyrosine kinase inhibitor; WT, wild-type.

Endpoints^e

motionaluse

- Objective response rate (primary)
- Duration of response
- Clinical benefit rate^f
- Progression-free survival
- Overall survival
- Adverse events
- Biomarker analyses (exploratory)

Plasma samples were collected pre-treatment, with ctDNA analyzed by Guardant Health (Redwood City, CA)

Results: Demographic and Baseline Characteristics

Characteristic, n (%)	WT-Ad cohort WT-Sq coho (n=41) (n=14)		
Median age, years (range)	62 (35–86)	71 (60–81)	
Male / female	26 (63) / 15 (37)	8 (57) / 6 (43)	
Race		1550	
White	8 (20)	3 (21)	
Asian	15 (37)	6 (43)	
Black or African American	1 (2)	0	
Not reported	17 (41)	5 (36)	
ECOG PS	. antitu		
0	7 (17)	2 (14)	
1	33 (80)	12 (86)	
2	1 (2)	0	
Median number of prior lines (range)	2 (1-5)	2 (1–3)	

- In the **WT-Ad cohort**, 41 patients received amivantamab, with a median follow-up of 6.2 months
 - 30 patients had ≥1 post-baseline disease assessment
- In the **WT-Sq cohort**, 14 patients received amivantamab, with a median follow-up of 6.3 months
 - 12 patients had ≥1 post-baseline disease assessment

Clinical cutoff: 31 Jan 2024

Ad, adenocarcinoma; ECOG PS, Eastern Cooperative Oncology Group performance status; Sq, squamous cell carcinoma; WT, wild-type.

Results: Safety Profile

		WT-Ad cohort (n=41)		WT-Sq cohort (n=14)	
AEs (≥15%) by preferred term, n (%)		All grades	Grade ≥3	All grades	Grade ≥3
Associated with EGFR inhibition					
Rash		13 (32)	0	4 (29)	C CO
Dermatitis acneiform		13 (32)	0	2 (14)	0
Paronychia		11 (27)	0	3 (21)	S 0
Associated with MET inhibition				131	
Hypoalbuminemia		16 (39)	1 (2)	4 (29)	1 (7)
Peripheral edema		6 (15)	0	4 (29)	0
Other				05	
Infusion-related reactions		26 (63)	4 (10)	<	1 (7)
Dyspnea		11 (27)	3 (7)	2 (14)	0
Constipation		10 (24)	1 (2)	3 (21)	0
Decreased appetite		9 (22)	SCI 0	2 (14)	0
Nausea		9 (22) 🤇 🔇	1 (2)	1 (7)	0
Asthenia		9 (22)	0	1 (7)	1 (7)
Fatigue		8 (20)	1 (2)	1 (7)	0
Pneumonia		6 (15)	5 (12)	6 (43)	3 (21)
Gamma-glutamyltransferase increased	. 9	6 (15)	1 (2)	2 (14)	0
Headache	i di	2 (5)	0	3 (21)	0

Ad, adenocarcinoma; AE, adverse event; EGFR, epidermal growth factor receptor; Sq, squamous cell carcinoma; WT, wild-type.

- Most common AEs were EGFR- or METrelated, primarily grade 1-2
- Treatment-related grade \geq 3 AEs:
 - WT-Ad cohort: 17%

otionaluse

- **WT-Sq** cohort: 21%
- Discontinuations of amivantamab due to treatment-related AEs
 - WT-Ad cohort: 4 (10%) patients
 - WT-Sq cohort: 2 (14%) patients
- There was 1 event of interstitial lung disease, of grade 2 and occurred in the WT-Ad cohort

Percent change from baseline in Sum of Diameters of target lesions^a

Investigator-assessed response (n=41)			
Median follow-up	6.2 mo (range, 0–18)		
ORR	7% (95% Cl, 1.5–20)		
Median DoR	4.2 mo (95% Cl, 4.1–NE)		
DoR ≥6 months, n (%)	1 (33)		
Best overall response, n (%)			
CR	0		
PR	3 (7)		
SD	12 (29)		
PD	22 (54)		
NE/unknown	4 (10)		
CBR ^b	29% (95% Cl, 16.1–45.5)		
Median PFS	1.6 mo (95% Cl, 1.4–3.6)		
Median OS	9.5 mo (95% Cl, 5.7–12.0)		

^a30 patients had ≥1 post-baseline disease assessment, 11 patients discontinued due to adverse events (n=5), disease progression (n=4), or physician decision (n=2). ^bCBR is defined as the percentage of patients achieving confirmed complete or partial response, or durable stable disease (duration of at least 11 weeks).

Ad, adenocarcinoma; DoR, duration of response; CBR, clinical benefit rate; CI, confidence interval; mo, months; NE, not evaluable; ORR, objective response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PR, partial response; SD, stable disease; SoD, sum of diameters; UNK, unknown; WT, wild-type.

Results: Amivantamab Activity in Biomarker-defined Subgroups

- Among patients with detectable ctDNA (n=24), 9 patients were KRAS/HER2+
- ORR was 0% (0/9) for KRAS/HER2+ and 20% (3/15) for KRAS/HER2-
- Median PFS was shorter for *KRAS/HER2*+ (**1.4 months** [95% CI, 0.7–NE] vs **4.2 months** [95% CI, 1.2–9.4] for *KRAS/HER2*-)

^aPatients were efficacy evaluable if they received at least one dose of study drug and have undergone at least 1 scheduled post-baseline disease assessments or discontinued treatment for any reason. Cl, confidence interval; ctDNA, circulating tumor DNA; KRAS/HER2+, patients with KRAS/HER2 mutations; KRAS/HER2-, patients without KRAS/HER2 mutations; NE, not evaluable; ORR, objective response rate; PD, progressive disease; PFS, progression-free survival; PR, partial response; SD, stable disease; SoD, sum of diameters; UNK, unknown.

Percent change from baseline in SoD of target lesions^a

Investigator-assessed response (n=14)				
Median follow-up	6.2 mo (range, 1–19)			
ORR	21% (95% Cl, 5–51)			
Median DoR	NE			
DoR ≥6 months, n (%)	2 (67%)			
Best overall response, n (%)				
CR	0			
PR	3 (21)			
SD	8 (57)			
PD	0			
NE/unknown	3 (21)			
CBR ^b	43% (95% Cl, 17.7–71.1)			
Median PFS	4.0 mo (95% Cl, 2.2–7.3)			
Median OS	NE			

^a12 patients had ≥1 post-baseline disease assessment, 2 patients discontinued due to an AE (IRR) or refusal of further study treatment. ^bCBR is defined as the percentage of patients achieving confirmed complete or partial response, or durable stable disease (duration of at least 11 weeks).

DoR, duration of response; CBR, clinical benefit rate; CI, confidence interval; NE, not evaluable; ORR, objective response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PR, partial response; SD, stable disease; SoD, sum of diameters; Sq, squamous cell carcinoma; UNK, unknown; WT, wild-type.

Conclusions

Amivantamab demonstrated antitumor activity in patients with refractory WT adenocarcinoma or refractory WT squamous cell NSCLC

– No progressive disease was seen in the WT squamous cell carcinoma cohort

Amivantamab activity was stronger in patients whose tumors lacked KRAS/HER2 mutations

– No response was seen in patients with *KRAS/HER2* mutations

Key Takeaways

Amivantamab monotherapy demonstrated antitumor activity in patients with wild-type squamous and adenocarcinoma NSCLC after disease progression on platinum-based chemotherapy and anti-PD-1 or PD-L1 therapy

> No new safety signals of amivantamab monotherapy were identified

NSCLC, non-small cell lung cancer; PD-1, Programmed Cell Death Protein 1; PD-L1, Programmed Cell Death Ligand 1.

Acknowledgements

- Patients who participated in the study and their families and caregivers
- Physicians and nurses who cared for patients and staff members who supported this clinical trial
- Staff members at the study sites and involved in data collection/analyses
- Medical writing assistance was provided by Lumanity Communications Inc., and funded by Janssen Global Services, LLC

Copies of this poster obtained through QR (Quick Response) and/or text key codes are for personal use only and may not be reproduced without written permission of the authors.

